
7 D-Ai4 165 DELAY-DOPPLER RADAR 14AGING(U) WASHINGTON UNIV ST LOU15 /2
NO ELECTRONIC SYSTEMS AND SIGNALS RESEARCH LAB
D L SNYDER 38 NAY 87 N8014-86-K-8378

UNCLASSIFIED F/G 17/9 NL

EIIIIIIIIIIIIEElhhllllhhllhl

EEmm!EmEEEIEEE



L 12.2

LI-o

IIIIL2 -4 1fl.. II 1.5 N~ 111i6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANOARCS-1963-A

-7WA



IJNWGN .UNIVERSlTY JNST LOUS"

Lcn
van DELAY-DOPPLER RADAR IMAGING

00

I Semi-Annual Progress Report No. 2
O.N.R. Contract NO0014-86-K-0370
Period: 1 December 1986- 30 May 1987

DTIC
ELEc r'

AUG 1 487t.':

ELECTRONICPrincipal Investigtor: Donald L. Sr r
AND SIGNALS D .I

tESEARCH LABORATORY

Department of Electrical Engineering
Campus Box 1127

One Brooings Drive
Washington University

87 8 4 005



I
I
I
3 DELAY-DOPPLER IMAGING-RADAR

3 Semi-Annual Progress Report No. 2

Office of Naval Research Contract Number N00014-86-K-0370

Period Covered: 1 December 1986 - 30 May 1987

I
I

I
!

Principal Investigator:

I Donald L. Snyder
Director, Electronic Systems and Signals Research Laboratory
Washington University
Campus Box 1127
One Brookings Drive
St. Louis, Missouri 63130

Scientific Program Director:

Dr. Rabinder Madan
Office of Naval Research
Code 1I14SE
800 North Quincy Street
Arlington, Virginia 22217-5000

JI



I
I
I

I DISTRIBUTION

I -o2

Mr. John W. Michalski
Office of Naval Research
Resident Representative
Federal Building, Room 286
536 South Clark Street
Chicago, Illinois 60605-1588

Dr. Rabinder N. Madan 1
Office of Naval Research
800 N. Quincy Street
Code I I 14SE
Arlington, VA 22217-5000

Director I
Naval Research Laboratory
Attn Code 2627
Washington, DC 20375

U Defense Technical Information Center 12
Building 5
Cameron Station
Alexandria, VA 22314

Acce;'ion ror
Mr. Harper J. Whitehouse NTIS (J-.&t
Naval Ocean Systems Center D1IS IA,: F]

Code 7402 Ua: ,1 L

San Diego, California 92152 d,, .

7- 11

*kftf Pg4\___

3 0
71c

,
I



3 Table of Conteats

1. Introduction ............................................................

2. Summary of Work Accomplished ............................................................. 2

3. References ..................................................................................... 3

4. Appendices..................................................................................... 4I4.1 Copy of Reference 6 ...................................................................... 4
4.2 Copy of Reference 7 ...................................................................... 5



I

3 1. Introduction

This second semi-annual progress report contains a summary of work accomplished on

O.N.R. contract number N00014-86-K-0370, Delay-Doppler Radar-Imaging, during the period

from I December 1986 to 30 May 1987.
-I,, The goal of this project is to formulate and investigate new approaches for forming images

of radar targets from spotlight-mode, delay-doppler measurements. These measurements could

be acquired with a high-resolution radar-imaging system operating with an optical or radio

frequency carrier. Two approaches are under study. The first is motivated by an

image-reconstruction algorithm used in radionuclide imaging called the "confidence-weighted"

algorithm. The second is one based on more fundamental principles which starts with aI
mathematical model that accurately describes the physics of an imaging radar-system and then

uses statistical-estimation theory with this model to derive processing algorithms.

Spotlight-mode high-resolution radar-imaging relies upon the relative motion between the

transmitter, target, and receiver. The target is illuminated by a series of transmitted pulses.

The return for each pulse is a superposition of reflections from various locations on the target,

with each location affecting the pulse by introducing both a delay and a doppler shift. The

returns are processed to produce an image of the target.

The common approach is to use the same transmitted pulse for each illumination of the

target. The returns are processed using a two-dimensional Fourier transform to produce the

target's image in delay/doppler or range/cross-range coordinates [1,21. Our goal is to compare

I images produced in this standard way with those produced using the alternative approaches we

are developing.

U Bernfeld [31 appears to be the first to introduce the idea for radar imaging of modifying

the pulse shape on successive illuminations of the target. We are using Bernfeld's idea in the

confidence-weighted approach. With this, the FM chirp rate of each pulse is varied so that the

angles made by the ambiguity functions in the delay/doppler plane are caused to vary over the

full range of angles between 0" and 180". Use is then made of the fact that, on the average, the

output of a receiver consisting of filters matched to doppler shifted versions of a transmitted

pulse is the two-dimensional convolution of ambiguity function of the pulse with the scattering

I
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3 function of the target [4], an output we call the delay/doppler power function. Given the

delay/doppler power functions for each illumination, the target's ambiguity function can be

3determined using the confidence-weighted algorithm (5].

2. Summary of Work Accomplished

During this reporting period, Mr. Robert C. Lewis completed the implementation of

conventional, two-dimensional Fourier-transform processing for use in comparison studies with

the new algorithms we are developing. This work is documented in his MS. thesis [61, which is

included here in Appendix 4.1. A computer simulation was developed of inverse synthet-

3ic-aperture radar processing using a stepped-frequency transmitted waveform. This simulation

was validated by the generation of several images from target scattering functions. A

mathematical model for a slowly fluctuating point target in the presence of additive noise was

applied to simulating the received signal from an extended diffuse target. This model was

implemented in the computer simulation. The effects on conventional radar-images of the

quantitatively specified noise are given. Images of simple radar targets were produced for a

random reflectivity process having varying degrees of coherence time. The results show that

random variations in the reflectivity have a significant effect on the quality of conventional

ISAR images. The target is unrecognizable unless the reflectivity has a long coherence time

compared to the duration of the radar illumination.

3 We are currently performing a similar simulation in which the confidence-weighted

approach is used to produce the images. The results will be presented in the next progress

report. A preliminary observation is that the images produced this way appear to be less

degraded by random temporal variations in the reflectivity.

The use of the two-dimensional Fourier transform to produce target images is based on a

deterministic model for the radar-reflection data. However, commonly accepted models for

returns from diffuse targets at optical and radio frequencies is not deterministic. We anticipate

that improved target images will be obtained by taking the random nature of the radar return

into account during the processing. For this reason, we have initiated work in formulating the

high-resolution radar-imaging problem as a problem in statistical estimation. Our first results

have been prepared as a report [71, which is included here in Appendix 4.-. This report is

presently being revised for publication in the IEEE Trans. on Information Theory, with the

6j2
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5main objective in the revision being to reduce the dimensionality of the matrices required to

form the image. The main result of this report is an iterative algorithm for producing target

3 images.
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A computer simulation was developed of inverse synthetic-aperture
radar processing using a stepped-frequency transmitted waveform. This
simulation is validated by the generation of several images from target
scattering functions. A mathematical model for a slowly fluctuating
point target in the presence of additive noise is applied to simulating
the received signal from an extended diffuse target. This model is
implemented in the computer simulation. The effects on radar images
of the quantitatively specified noise are presented.
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3IVERSE SYN'1 C-APERnR RADAR IHAGING

1. IlTRODUCTION

Inverse synthetic-aperture radar (ISAR) imaging is a technique for

Imaking two-dimensional delay-doppler images of flying aircraft at long

distances. The resulting image is a spatial distribution of the

reflected signal power from the surface of the target at sufficient

g resolution to distinguish features for recognition. These radar images

are often judged similar enough to visual images to enable feature

recognition and target identification.

There are many other applications in which the ISAR imaging

3techniques are used. Sensors using other frequencies and signal media

are used; for example, underwater sound (SONAR) is used in submarines to

make images of other ships. Also, the idea of forming an image of an

unknown target for recognition purposes in not the only objective.

Radar images are made in laboratories to resolve the radar cross section

of features on an aircraft or other radar reflector.

This thesis addresses the application of airborne imaging of a

target aircraft. It documents the results of a project during which a

3 computer program was developed to generate an ISAR image from a speci-

fied target scattering function. The results of this development are

demonstrated by examples of images which were generated. In addition, a
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noise model was developed for radar data and was implemented in the

simulation to provide a quantitative analysis tool useful for observing

the effects of random reflectivity and additive channel noise on radar

images. Resulting images are presented.

1.1 BACKGROUND

The research for this thesis was conducted as a part of a radar

imaging project in the newly formed Electronic Systems and Signals

Research Laboratory of the Electrical Engineering department at

Washington University. It contributes to the laboratory's objective of

developing an ISAR processing capability to be used as an aid in study-

ing the performance of conventional ISAR imaging compared to new imaging

algorithms currently in development, see (1)*. The new algorithms are

based on different approaches to the radar imaging problem, and their

relative performance to ISAR is a major laboratory interest.

1.2 RADAR IMAGING

The signal transmitted by a radar can be designed so that received

echo signals can be measured to yield information about the appearance

of the target. The measurements are usually displayed as a two-dimen-

sional image, like a photograph. A well-known experience which is an

analogy to this operation is using a flashlight in a dark room to

illuminate an object within the light beam. The flashlight is analogous

JI

* The numbers in parentheses in the text indicate references in the

Bibliography.
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to the radar illuminating the target. A radar illuminates a target with

microwave energy instead of light. The eye can resolve the illuminated

Ok surface of an object quite finely so that detailed features are seen.

Likewise the radar processing must finely resolve the surface of the

illuminated target. An image shows the variation of reflected power

across the surface of the object to the spatial resolution limit. The

radar's target also resides within the beam width of illumination. One

important difference of radar imaging, compared with visual imaging, is

that the target must be rotating.

The radar-signal processing must make use of two received signal

parameters in order to produce an image. The parameters must be

directly related to separate orthogonal components of the two-dimen-

sional position across the object as projected on the image plane. In

radar imaging, the received signal parameters used are round-trip delay

and doppler frequency shift. Any point on the surface of the target can

be located in a delay-doppler two-dimensional image plane. To under-

stand this. refer to the geometry of the location of the radar set

relative to the target, as shown in Figure 1.1. A narrow pulse trans-

mitted from the radar and reflected from a point target will be received

after a round-trip delay time. The delay locates the point in

down-range position. A large target is a rigid body rotating about an

axis at its geotric center, and points distributed on its surface are

moving at different velocities, depending on each one's distance from

the axis. For a group of points with the sam delay location, contained

rA in a slice of the target at a down-range position, their cross-range

position corresponds to distance from the axis of rotation, and there-

fore velocity. A target point's velocity causes a doppler frequency
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shift of the reflected radar signal. By measuring doppler frequency, a

point target can thus be located in cross-range by using doppler. The

delay-doppler plane indicated in Figure 1.1 corresponds directly to the

x-y position plane shown.

Rotation Axis
Spherical

.- Target

RADAR

tip Doppler
Slice

Deloy
Slice Delay-Doppler

ReslutMion Coill

Figure 1.1 ISAR Imaging Geometry

1.3 ISAR IMAGING

The relative rotation between the radar and the target may come

from either the radar being fixed while the target rotates, or equi-

valently, the radar rotates about the fixed target. The latter situ-

ation is used in synthetic aperture radar (SAR) imaging where a ground

map is made as an aircraft flies by. The descriptive term "synthetic

aperture" refers to the equivalent antenna aperture derived from
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integrating received signals over a long flight path. A longer antenna

I results in finer resolution of the target, thus a long flight path while

imaging is desirable. Ground mapping by SAR techniques preceded the use

of ISAR, or inverse SAR, for aircraft-to-aircraft imaging. The descrip-

tion "inverse" refers to using a fixed radar and a rotating target,

which is close to the actual situation in air-to-air imaging when using

the radar's aircraft as a position reference. The computer processing

used in the above two cases of imaging are nearly the same.

The ISAR imaging geometry is shown in Figure 1.1. The axis of

Urotation is normal to the line between the radar and the center of the

target. The resulting image shows the point of view of looking along

the axis of rotation, with illumination coming from the side.

A large target's body rotation axis may have arbitrary angle of

I intersection with the radar line of sight. As described by Wehner

in(3), in this case the "effective rotation axis" is coplanar with the

radar line of sight and the true rotation axis and perpendicular to the

radar line of sight. The effective rotation vector has magnitude of the

vector projection of the true rotation vector. Also, the delay-doppler

image plane is normal to the effective rotation axis.

4.
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2. ISAR TECHNIQUES AND WAVIUORMS

This chapter contains a description of two implementations of ISAR

processing. They differ in the waveforms transmitted. The first uses a

linearF pulse waveform. The second uses a stopped- frequency

pulse-burst waveform. The second waveform is a discretization of the

linear-FIN pulse waveform. It is best described in comparison to the

linear-FM pulse, and so both techniques are described below to allow a

better overall view of ISAR techniques.

2.1 LINEAR-FM ISAR IMAGING

The technique of using a linear-FM pulse waveform for ISAR imaging

is described in (2). A series of pulses is transmitted to produce an

image. Each pulse has a rectangular envelope and linear swept frequency

during the pulse. The instantaneous frequency of a linear-FM pulse is

illustrated in Figure 2.1.

poemnc WOPW1

t T
swept-Fr@quellcy

Bandwidth

The InstAintaneoue Freqecy of a Linear-PH Pulse

Figure 2.1
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The received signal is processed in the following way. It is mixed

with the transmitted signal and sampled, to produce a discrete time

signal which when Fourier transformed will yield the range profile of

the target. An illustration of the radar systm components along with a

3 comparison of the transmitted and received signals for a point target

and the mixer output is shown in Figure 2.2. The mixer output signal is

I sampled and the discrete Fourier transform (DFT) is calculated to get a

sequence of complex numbers. The magnitude values of this complex number

sequence would be the target range profile, but in getting an ISAR image

several linear-FM pulses are transmitted and received, mixed, sampled

and transformed. The complex range profiles resulting from each pulse

are aligned in rows of a two-dimensional array so the columns represent

a range bin, the same range value. This two-dimensional array corres-

ponds to the image plane shown in Figure 1.1 such that the rows, each

containing a mixer output sequence resulting from a pulse, are aligned

parallel to the y-axis. The columns are parallel to the x-axis.!

Trans Ante"n

Frelu4ency JfPitTr tr

Wi- -0

Pt I

Pandei 22 The Lo.mPUm Syom a W!
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The DFT of each colun in the array is then calculated. This sorts the

doppler frequencies of the data in the range bins yielding cross-range

profiles when the magnitudes of the resulting complex numbers are

calculated. After this second step, the array co..ains an image which

shows the distribution of reflected energy over the surface of the

target.

2.2 STIPPKD-FRQUINCY ISAR IMAGING

This variation on ISAR techniques, from (3), may be described as

using a discretized version of the linear-FM pulse waveform. The

stepped-frequency waveform consists of a sequence of narrow pulses, with

rectangular envelopes, comprising a burst of pulses. This burst of

pulses is illustrated in Figure 2.3.

Pu# -

- TI T3

Puls 1m4., I 2 Tom

PFgW 2.2. The mP814 "e81 PuftO OSt 1

A........
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Each succeeding pulse in the burst is stepped in frequency. The

separation between pulses is large enough for the transmitted pulse to

travel to the target and the echoed pulse to return to the receiver

3 before the next pulse is transmitted. This is illustrated in Figure

2.4, showing the relative delay of an echo from a point target compared

5to the time interval between transmitted pulses. The interpulse spacing

is referred to as time T2 . The duration of the burst, referred to as

time T3 , is the same length as a linear-FM pulse, yielding the same

doppler resolution. This comparison is based on the formula for

cross-range resolution, from (3),

4sin(0/2) 2 = 2w NT3

For a linear-FM pulse waveform, A is the wavelength of the center

frequency, whereas for a stepped-frequency pulse-burst, A is the

wavelength of the lowest frequency in the burst. The total angle

rotated by the target is 8. and target angular velocity is wr

|mass RetM fTR eMWM a"" tfI
-e~qpm iLe bItmam m Tumnme mi Sommd Prome
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Lineal - FM Pulse

Frequency i..__

T3

PagOrO 2.5. Cepete el Pulse Burt Wit Ln.wP Pulso

In Figure 2.5, the stepped-frequency burst of pulses is compared to the

linear-FM pulse, shoing the same swept-frequency bandwidth transmitted

during the respective waveforms. This bandwidth is the same for each,

to yield equal delay resolution. The equation for delay resolution is

as follows, from (3),

'_-A
FrE

where B, also used in Figure 2.5, is the swept-frequency bandwidth of
the lInear-FM pulse and the stepped-frequency burst and is the speed

of light. It is seen that the stepped-frequency burst is a discretized

version of the linear-FM pulse. Each pulse in the stepped-frequency

... . . .. . ea -F p ls a,,n.,,d++, the,, +,,+ + ste pd-, ,, fre ue cy bu st an C is t, s ee
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Stepped-Frequency Pulse Width Coverage

I Figure 2.6

waveform has duration TV, chosen to correspond to the two-way travel

time of a signal across the f ield of view of the image along the delay

3 dimension. This arrangement enables the following situation, as illu-

strated in Figure 2.6. The reflected pulse arriving at the receiver can

I be considered to be composed of component pulses reflected by resolution

cells distributed in delay. By measuring the mixed received signal at

the instant of time T11/2 seconds after the round-trip delay to the

center of the image area, illustrated as T in Figure 2.6, the mixer

output, a complex quantity, will be the sum of received signal corn-

ponents from each resolution cell in the target. A measurement of the

complex signal is made in this fashion for each return pulse, after

mixing with the transmitted pulse, resulting in a sequence of complex

numbers for each burst of pulses.

II
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Several bursts are transmitted to produce an image. The sequence of

received measurements for each burst can be placed in rows of a two

dimensional array in the same way as linear-PH processing. The rows

represent the spectrum of a range profile of the target and, when the

inverse Fourier transform is computed, result in the complex range

profile. To generate an image, the forward Fourier transform magnitude

of each colim is comuted, as it was for the linear-FM technique, to

sort doppler frequency components into a cross-range profile. The result

is a two dimensional image.

There are several advantages to using the stepped-frequency tech-

nique to make ISAR images. Since a narrow pulse of constant frequency

is the basic unit of the waveform, with each of these separated by a

relatively long time interval, the wide instantaneous bandwidth and high

sampling rate requirements of transmit and receive equipment is removed

compared to what is necessary for the linear-FM technique. The

stepped-frequency ISAR technique is far simpler to implement for this

reason.

2.3 ANGULAR DOPPLER PROCESSING

As described by Mensa (2), in the stepped-frequency waveform and

linear-FM waveform, and associated imaging techniques, there can be seen

a duality of time and angle of the target during signal transmission.

The target rotates continuously and there is a one-to-one correspondence

between time and angular position. Therefore, the Fourier transforms,

which were before seen as operations on temporal signals, can also be

viewed as transforms of spatial signals.

Making use of this concept means that the stepped-frequency ISAR

approach can be used in a laboratory setting to make two dimensional
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radar images without having to rotate the target continuously. The

3 target's angular position is merely incremented without regard to time.

Also, it is not necessary to use narrow pulses at all, but merely to

reflect a continuous wave signal of specified frequency off the target

and measure the mixer output from the received continuous wave signal.

Continuous wave transmission and reception equipment is simpler than the

equipment necessary for pulsed operation and means that a laboratory

implementation is relatively easy to construct. Laboratories use this

angular doppler technique to two-dimensionally map, with high

resolution, the radar cross-section of targets.

L
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3. ALGORITHM IMPLEMENTATION I
A computer program was developed which implements stepped-frequency l

ISAR imaging. This was implemented as a simulation of radar imaging, so

targets were specified and their scattering functions were determined

analytically. The computer program uses the scattering function to

calculate the mixed received signal from the target. The ISAR process- I
ing part of the simulation uses the received signals to generate an i
image. This simulation was implemented in the facilities of the

Electronic Systems and Signals Research Laboratory at Washington j
University. The radar images obtained were displayed on a color

graphics display. To accomplish this, it was necessary to study the l

mathematical model of ISAR processing. This model is presented in this

chapter. Also described are computer algorithms which implement the

radar imaging simulation. Finally, the results of the radar imaging 1
simulation are presented by examples of images which were generated.

3.1 DISTRIBUTED TARGET MODEL l

The objective is a high resolution image of the radar target. The

target is distributed over many resolution cells. When the entire

target is illuminated by the radar, the target is within the antenna j
beam width, and the back-reflected signal is considered to consist of

the superposition of the returns from the multitude of resolution cells. I
Each resolution cell appears as a point scatterer. Thus, the target can

be viewed equivalently as an array of point scatterers which produces I
the same radar return as the actual target. For the disk and spherical

I

I



Figure 3.1 where one such resolution cell is located as an intersection

in delay and doppler. In the front view of the target shown in Figure

3.1, the radar illuminates the target from a position perpendicular to

the plane of the paper.

Disk Sphere

(Top View) D0lay (Top View)

\ I / _ .. m,°*

Hernisphere

Rotation -

Axle Delay
'Slice

(Front View)(ro Dtpiew

(Front View)

Figure 3.1 The Disk and Sphere Targets

I
In fact, for the spherical target, there are two area elements on the

surface with the same delay-doppler coordinates. This is an ambiguity

resulting from the geometry of the situation and the properties of high

resolution radar. The radar resolves the three dimensional target

surface in only two dimensions, delay and doppler. The total reflection

of the resolution cell is the sum of the reflection of the two area

elements.
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Delay -Doppler Planeo. I

II

z z: -- oppler Location
I

Spherical Target I, .- / Shadowed
illuminated I I Hemisphere

Hemisphere I,

II

F'gr \-Delay Location

Figure 3.2. The Delay-Doppler Plane

The two area elements of the resolution cell are equivalently mapped

onto the delay-doppler plane shown on Figure 3.2. Point scatterers on

the delay-doppler plane can represent the resolution cells mapped onto

it. The reflectivity of a point equals the vector sum of reflectivity I
within the resolution cell, as described in (3).

The two-dimensional planar array of points of reflectivity squared

magnitude is called the scattering function of the target. The signal i
which would be received from an illumination of the point scatterers in

the scattering function is equivalent to the back scattered signal from

the actual target. However, the following assumptions are imposed on the

reflectivity of the points during ISAR imaging, as described in (4). It

is assumed the reflectivity does not change over the bandwidth of

illuminating signals. Also, it is assumed the reflectivity does not

change as target aspect changes with rotation during the sequence of

pulses necessary for an image.

~i
.0.V
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3.2 STEPPED-TEUENCY ISAR PROCESSING MODEL
At the instant of mixer output measurement specified as Tb in

Figure 2.6, the received signal is comprised of the superposition of

components echoed from the point scatterers in the target. The super-

position occurs over the delay-doppler plane as follows. The whole

received signal,

S.()- z ' (t).
u,v r

where u is the delay location, v is the doppler location, and t is the

time.

The received signal component due to a resolution cell reflection is,

br(t) ST(t-T),

where T is the travel time delay, and b is reflectivity at the

delay-doppler coordinate. This received signal is a reflection of

the transmitted signal,

sT(t) - f(t) ej 2Ifit

.w'ere i is the pulse number, fi is the frequency of the pulse, and

f(t) is the complex envelope of the transmitted pulse. Assume f(t)

1.0 within the pulse.

For the discussion in this section, the reflectivity is assumed to

be a real number and a deterministic value equal to the square root of

) (u,v), reflected power in the resolution cell at the delay-doppler

" coordinate (uv). The quantity A(u,v) is also called the scattering

function. In this section, the processing is shown to map correctly the

delay-doppler reflected power, a non-randomly fluctuating quantity.

This will verify the proper operation of the processing.

5 , , I
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If ISAR processing works correctly, it recostructs from the

received signals the scattering fumction which produced them. becauod

of the linear superposition property of the Fourier transform, the

imaging of the entire scattering functiom is the sun of the imaging of

single point scatterers. Therefore, consider a single point scatterer

and the received signal from a pulse reflected from it,

a I M - b .2fi(t") b is real.

This signal is a complex quantity consisting of real and imaginary,

alternatively in-phase and quadrature, components. To get an ISAR image

of the single point, the first step is the mixing of the received signal

with the transuitted signal. This is accomplished by the system shown

in Figure 3.3.

S Tw*Tt
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The mixer output is derived as follows. At the instant of measure-

3ment the mixer output signal,

mit - >LP[Re(s'i(t))-Re(svT(t)) r j 2-LP[Im(S'i(t)).1m(q(t))J,

where LP means a low-pass filter, si is the received signal,
#W 11 #W 03ST is the transmitted signal, and q - ST shifted 900- j ST.

In the first term,

Ref .( t)1 Ref'Sw(0) - b cos 2wf.(t-T)-cos 2iif.t
IT1 1

where Ref[ mans the real part is taken. Since

cos(at)-cos(bt) - 1[cos(a+b)t +cs(-~l
it follows that

Re['si(t)]'Re(f'(t)] - b[o 2wfi(2t-'r) + cos 2if T1.

Similarly, since sin (at) .COS (bt) - -1[sin(a+b)t + sin(a-b)t],.

I in the imaginary term of the mixer output signal,

Imls i(t)-Imq~it - b sin 21f 1(t-T)(-cos 21rf 1

C~~ ~ [ -sin 2irf (2t-T) - sin 21rf (r

f-sin 2si2-)+ sin %,]

where taf mans the imaginary part is taken. After low-pass

filtering, the real component of the mixer output signal is given by

2-LPfRe('s (t))Re( W - b cos 21rf i

Also, after low-pass filtering, the imaginary component of the mixer

output signal is given by

j 2-LPfIm('s (t)).Im(' (t))] j b sin 2wf T
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Therefore, the total mixer output signal is given by

mi(t) = b cos 2%ffiT + j b sin 21if. ,

or, I
mi () - b i

Tor a single point target of arbitrary location in the delay-

doppler field of view, the round-trip delay T is given by

i - r(t) - -(r-vt),

where Vr is relative velocity of the point target, and r is initial

range to target.

There are a fixed number of pulses in a burst, yielding a sequence

of mixer output values. Time within the burst is incremented as

follows:

t - i T2 + T1 /2 + k T3 ,

where k is Burst index, TI is pulse width, and i is the pulse index.

Using this equation for time in the above equation for round-trip delay,

T my be expressed as

-2(r - V(i T2 + T/2 + k T3 )).

The expression for the mixer output signal then becomes,

a W b exp[J 21fi 1(r - vr(i T2 + T /2 + k T3 )),

where exp [ ] means an exponential function.
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The sequence of mixer outputs from a burst is inverse Fourier

3transformed to get a range profile RP(n) of the target,
1 N -i j i n,

RP(n) - IDFT[]- 1 0 Ni N i-i-o

- where N is the number of pulses, n is the range profile index, IDFT

means m inverse discrete Fourier transform is computed. Substituting

the expression for the mixer output signal in this range profile

equation, it is seen that

RP(n) - 1 21f 2 (r-v(i T2 + T/2 + k T3 ]exp[j 2- i n],
RP n exp[j 2wf i  -c T

i=O

or after rearranging terms,

bN1 2w 2RP(n) I Z exp{j W- (i n + Nf. (r-v (i T + T1/2 + k 73))).

The frequency of any pulse is expressed as, fi - fo + i Af, where fo

3 equals initial frequency used in the burst and Af is the frequency step

of the succeeding pulses. It follows that

RP(n) k N-1 27 - (i n + (f + iaf) (r - Vr(i T + T /2 + kT3)).N= ox~ -c

By using N~f - B, and B- the above expression for the range

c Ar

profile is simplified. Also, the following restriction on point target

motion is imposed,

jvr(iT 2+T1 /2 + kT.)<ar,



-22-

where Ar is range resolution. This restriction implies that the point

does not move out of its resolution cell during rotation. This results

in the following expression for the range profile,

b N-1 2w iRP(n) Z o exp[j - (i n + r + Nf r)]. (3.1)

Since r. = n 2r-
irn- not and c- - k it follows that

b j 2vf N-I 2w )
RP(n) N o k e i(n-n (3.2)

i=O

where T is a delay time associated with a particular burst. The

resulting range profile is then from (3),

RP(n) - b ej 2vfoTk sin w(n-no )

sin 1(n-no)

The range profile sequence has a function narrow "impulse-like"

term which has peak response within the down-range resolution cell where

the point target is located, low-level sidelobes next to the peak and

essentially zero response in other positions. Each burst has a range

profile described by the above equation, containing a phase term which

is a function of burst number and target velocity. In the following,

the above equation is simplified by replacing the narrow "impulse-like"

function term with an ideal impulse which is unity within the down-range

resolution cell of the point target and zero in other positions, thus

ignoring the low-level sidelobes of the above response.

In this manner, the above equation is expressed as,

RP(n) m b eJ 2rfo "'k 6(n-n o ) (3.3)

jurl &I
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In the next step of ISAR processing, the point target is located in

cross-range position by taking the discrete Fourier transform (DFT) of

the sequence of range profile values of constant range,

N-i 2-w
DFT [RP(no)] 0 Z b exp[.j 2wfoTk ] exp[-j W- kal.k=0

This is described as a cross-range profile,

SN-1 2w
CRP(m) - b E exp[-j W'- (ink - Nfo'Tk)],

k-O

where m is the doppler index of the sequence and T _ (r-Vr k T3).

Using this expression for burst delay time in the cross-range profile

results in

N-1 2r 2
CRP(m) - b Z exp[-j - (km - Nfo - + kT3 - VrNfo)].

k-0 c c

% By separating out the constant phase term, T = , and inserting
c

fo ,the cross-range profile becomes,

N-i 2w 2V
CRP(m) - b E exp[-j W- k(m + NT V expli 2f T.

103A r 0k-0

Since V - m° Axr 0 rp

Ni2i NT32
CRP(m) - b exp[j 2wf 0] I exp[-j - k(m - - 0 An x Wr)].

k=O

Using Ax - w NT

CRP(m) b ej 2rf 0 N-i 20 be2 sin r (n-no )
= Z e- j  - k(in-io) =e 2'rf sin [,.

k-0 sin - (n-no )
N

p e-.*-.
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By retaining only the peak impulse response and ignoring low-level

sidelobes,

CRP(n) - b ej 2fo 6(m-m).

The magnitude of the cross-range profiles forms the image. When simpli-

flying the expression by ignoring side-lobes and using only the 'deal

impulse peak response, the profile magnitudes form an image,

ICRP(m)j - Image (n,m) - b 6(n-no, m-mo).

This is the final result of ISAR processing. It is seen that the

point target shows up in the image at delay-doppler coordinate (no, m0 )

as a point with magnitude equal the square root of the scattering

function, as it is supposed to.

For some parameter choices, the total angle of target rotation

during the image frame time is more than a few degrees. In this case,

the point target described above will migrate out of its resolution cell

during the image frame time, invalidating the assumption used in getting

equation 3.1 above. The effect will be a distorted image. This problem

is described in (3) and is known as "range walk". A resulting image

will appear as if each range profile is staggered in position relative

to its neighbor. This distortion is corrected by multiplying the mixer

output samples by a correction factor derived here.

Compensating for the range walk problem results in the following

modification of equation 3.1,

b N-i 21 r 2Nro
RP(n) exp[j- (i n + r(r - VkT3 ) +N-f (r - VkT3)).Rn) N i~o NA

%I
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This range profile equation can be reduced to,

b 21 N-i 2v
RP(n) exp[j fo~ ] I exp[j i((n-n) - k )r (3.4)I11o

By representing the response as an ideal impulse and ignoring low-level

sidelobes, this range profile is expressed by the following function

additionally dependent on burst number,

RP(n, k) - b 6 (n-n - k = 3N 0 Ar

This expression for the range profile looks like that in equation

3.3, on page 22, except that for each succeeding burst, the profile

position is offset in range position by a term due to target motion

between bursts. This is corrected by multiplying the mixer output

sequence for a burst by a correcting factor prior to computing the

transform. This modifies equation 3.4 so that it looks like equation

3.2, resulting in a corrected range profile,

- b 2 1 N-i 2VT 3

RP(n) = exp[j f Tk Z exp[j 2- i(n-no - k - )] ik,
NAr

where Sik is the range walk correction which equals

21T VT3exp[j A- ik - . Then,

b 2T N-1 21r (n k-3RP(n) exp[j f T I exp -r exp[j -- ik -]
N N o ioN N Ar

b .22. N-n 2 -)f
M exp - fo~kI Z exp[j i(n-no)].

From this, it is seen that the range walk correction factor does restore

the range profile to the proper form.

Vr



-26-

3.3 COMPUTER SIMULATION

A FORTRAN program was written to achieve the goal of producing ISAR

images in the laboratory by simulation. The dimensions of simulated

targets were specified, and their scattering functions were supplied for

use. The simulation contained two parts. The first part inputs the

scattering function and calculates the mixer output signals from that

target for all pulses and bursts transmitted. The second part processes

the signals using Fourier transform techniques, as described here, to

produce an image data file. An image display routine is used to display

the simulated ISAR image on a color monitor.

An algorithm is presented in Figure 3.4 to describe the programming

of the part of the simulation which calculates mixer output signals.

Read in Scattering Function

Increment Burst Number i
Kul
Increment Resolution Cell (.r, f) j (. J)

Increment Pulse Numbe n
Calculate Received Signal S(n)

(n ) - S k.(n) * S(n)
NOW E~nd L;

End Loop
Store S(n) in S(n. a)

End Loop
Normlize S(n. e) to mex [S(n. )3 • 1.0
End

Algorithm of Mixer Output Simulation

Figure 3.4

Jill
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A two-dimensional array is used to store the resulting radar signals;

5each burst forms a row of the array.

Two analytic targets were chosen, a rough disk and a rough sphere.

The field-of-view of the image was chosen to be 76.8 meters in both

range and cross-range dimensions. The resolution in both dimensions was

chosen to be 60 centimeters. The scattering function is a 128 by 128

array of reflected power values. The diameters of both the disk and

sphere were chosen to be 38.4 meters with both centered in the field-

of-view. It was desired to write a computer program that would generate

an image of size 256 pixels on each side with the same resolution of 60

cm in each coordinate. This is accommodated in the Fourier transform

techniques by padding with zeroes. This results in an image that is

magnified by a factor of two and is easier to see on the color monitor.

In this simulation, 128 pulses per burst and 128 bursts are used in

the transmitted waveform. This covers the field-of-view of interest,

given the resolution. The resulting two-dimensional array holding the

mixer output signal is of size 128 by 128. The range profiles are

calculated with an inverse discrete Fourier transform (DFT). This

procedure uses a subroutine for DFT calculation which was supplied by

7the University. Also in computing a range profile, the 128 point signal

is placed in the center of a 256 point array, padded on both ends with

V i 64 zeroes, for the inverse DFT operation. The resulting 256 point range

profile, divided by the number of points, replaces the row of signal

data in the two-dimensional array.

M R'
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In the final step of calculations, the cross-range profiles of the

image are made using a forward DFT on the columns of the two-dimensional

array resulting from the last operation. However, rearrangement of the

data in the 256 point array is necessary. Instead of placing the 128

data points in the center of the 256 point array, the first 64 data

points are put in the first 64 array locations and the last 64 data

points are placed in the last 64 array locations, leaving the center

array locations zeroed. This is due to the way the DFT routine

operates. After the DFT is computed, the zero frequency location is in

the first array location, so the data are rearranged with the last half

of the 256 points switched with the first half. This is illustrated in

Figure 3.5. The squared magnitudes of the resulting complex numbers are

stored in each column of the two-dimensional array. The resulting
N!

two-dimensional image data array is used with a color scale to display

the image.
S* Ilf
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The computer listing is included in the Appendix in Figure 7.1. In

the main routine, PROC3, the target's scattering function is input and

the mixer output signal is calculated. This signal is normalized to

peak magnitude. Subroutine DIAG 2D is then called to reconstruct the

image.

As a part of this simulation development, a modification of the

Fourier transform techniques described above was investigated. A

modified IKAGE2D subroutine was constructed in which the Fourier trans-

forms were "windowed" with a normal function,

w(n) = e -0.09 (n-N/2)2 , n - index, N - 128.

Windowing is described as multiplying the complex data sequence by

the window function before calculating the transform. Due to the

symetry properties of the Fourier transform, each of the delay and

doppler transforms are windowed with the same function. This modified
4-.

routine is called IMAGE2DW and is listed in the appendix.

%i1" -

tk>
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.- COMPUTER FACILITES

The computer prcgrar: was written in FORTRAN or a Massachusets

Computer Company (,IASSCOMF image processing computer, model MC5Cj7, it

a color graphics display terminal. The color of the p:ixels ii. te e

raster display are controlled by a color scale with 64 intensity levels.

A heated object color scale was chosen. Once a two-dimensional arra' ,-

data is available, an image display routine is executed which reads ,

data and generates the image or the screen. A picture of this fcil."

sresented in Figure 3.6.

i

f hot ograph ot Comput er ac iit i es

Figure 3...

I. 'R. N
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3.5 SIMULATION RESULTS

Several scattering functions with the same resolution and size were

used in tests of the ISAR imaging simulation. These scattering func-

tions can be displayed to see what the actual target looks like. Their

data arrays are sized 128 by 128, but it is desired to see them as a 256

by 256 pixel image. Therefore one data point drives 4 pixels in order

to double the size of the image. As first test cases, point target

pairs were used. One pair has a point in the center of the image, at

location (64,64) of the 128 bv 128 scattering function, and a point at

(64,96). Another point target pair uses a center point and a point at

(64,66). The ISAR imaging simulation was used to reconstruct ISAR

images of the scattering functions. These radar images are displayed in

Figure 3.7 with the closely spaced pair on the left (a). The resulting

images are 256 by 256 pixels in size due to the processing implemen-

tation described above. The fact that the radar images look like the

scattering functions confirms the proper operation of the ISAR process-

P. ing for these test targets.

(a) (b)
ISAR Images of Point Target Pairs

Figure 3.7
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During image display, the image data is scaled to the color scale

so that the peak value is shown as white and zero values appear as

black. In the images in Figure 3.7, the peaks of the responses from the

point targets are seen very well. However, there are also sidelobes to

the peaks which are subdued in these pictures by the color scale and the

effects of film processing.

The scattering functions of the rough disk and rough sphere are

displayed in Figure 3.8. These scattering functions come from reference

(1). The disk is shown on the left (a) in the figure. Note that the

sphere (b) shows the effects of shadowing which makes the illumination

look somewhat like a partial moon. Also, the reflected power is

greatest from the point on the target closest to the radar and decreases

for points closer to the shadowed edge. In this figure and in other

similar images shown here, the radar is illuminating from the left side.

IIM  I

(a) (b)

Scattering Functions of Disk and Sphere

Figure 3.8

N=1 62

LM. --- ~k
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Reconstructed images of the disk Lind sphere are presented in Figure

3.9. Horizontal corresponds to the delay dimension and vertical to the

doppler dimension. Note that the sphere's image (b) looks like that in

Figure 3.2. The disk's image is on the left (a) in Figure 3.9. There

is substantial low-level sidelobe energy in the image which can be

smoothed out by windowing, but results in a loss of resolution.

- (a) (b)

ISAR Images of Disk and Sphere

Figure 3.9

An image of a center located point target, reconstructed using

windowed transforms is shown in Figure 3.10. The window is described at

the end of Section 3.3. As can be seen, windowing blurs a point target.

" The profile of the image is also plotted in the figure. The plot also

shows the form of the window. A similarly windowed image of the spheri-

cal target is presented in Figure 3.11 along with the profile plot.

Those images suggest that the blurring introduced by windc.ing reduces

W image quality, but side-lobe energy is reduced.

Sf\jN
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Windowed ISAR Image of Center Point Target

and Profile Plot

Figure 3.10

Windowed ISAR Image of Spherical Target

and Profile Plot

Figure 3.11
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4. STATISTICAL TARGET MODELm
In the preceding chapter, the reflectivity of the target surface,

for each resolution cell, was taken to be a fixed real value equal to

the square root of the scattering function value. This was for the

purpose of verifying the ISAR processing. The next desired step was to

image a diffuse target surface. The reflectivity of a diffuse target is

a complex random process.

The resolution cells are distributed in the delay-doppler plane.

Each is described as a slowly fluctuating point target in the presence

of additive noise. The resolution cell is made up of several reflecting

surfaces which combine to produce a random reflected signal. Slowly

fluctuating means the reflectivity is partially correlated relative to

the transmitted signal pulse burst period.

4.1 MODEL OF A SLOWLY FLUCTUATING POINT TARGET

The source for this model is Van Trees (5). The radar's trans-

*mitted signal is represented as follows:

sT(t) - A f(t) exp[j2Tfit]

where f(t) is the normalized complex envelope of transmitted signal,

A is the amplitude, and f. is the carrier frequency. The power of such

2
a signal is A , from (6,7).

Consider a point target in space, representing a resolution cell in

the delay-doppler plane with zero velocity. The reflected signal from

such a target includes the effect of the random reflectivity process.

N* A Z*
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This noise source is multiplicative and the received signal can repre-

sented as follows:
h - -

r(t) = b f(t-r) exp[j 2f i(t-1)]'

where T is round trip delay. The term b is a complex Gaussian random

variable with zero mean. The variance of the real and imaginary com-

ponents is equal to half the power of the reflected signal. A point

target with non-zero velocity will have the same form of reflected

signal, but the carrier frequency will be shifted by the Doppler effect.

A target which is extended in the delay-doppler plane, and slowly

fluctuating, is considered to be composed of an array of point targets 1
representing the resolution cells, each contributing a reflected signal

of the above form. So, the total received signal from such a target is

the sum of the received signs from each point target. Representing

this sum and the additional feature that the signal has a doppler

frequency shift, the received signal can be expressed as, I
sr(t) - Z b f(t- ) expfj(wi + Wr)t],

2v 

'

where w r w E r is the doppler frequency, w. M 2vf., the transmitted

frequency, and (u,v) is an element of the delay-doppler plane.

The random reflectivity term has the property that it is wide-sense

stationary and spatially uncorrelated. This property along with the

slowly fluctuating property implies an approach in simulating the mixer i
output from a target.

For a resolution cell, the reflectivity from pulse to pulse is

correlated by using a recursive filter. White Gaussian noise is

filtered so it has a desired autocorrelation function. Two filters are

a, - ~ . -
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operated to generate separate outputs for each of the real and imaginary

I comp..ts of the reflectivity.

The following recursive filter was chosen from (8),

Yn = ayn-I + (1-&2)1/2 xn.

3The input parmter Xn is a white gaussian variable which has a weighted

contribution to the output value Yn" The previous Yn- 1 value has a

weighted contribution to the output. The autocorrelation function of

the filter output,

R(k) - Rx(O) alki . ox 2 ajkj

The shape of the autocorrelation function is shown in Figure 4.1. The

-'-' slope of the function near the peak is used to relate the parameter a to

correlation interval parameter C1.

oI *
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ISAR processing calculates the Fourier transform of the delay-

doppler signal having random reflectivity. The result can be viewed as

a convolution of the desired power density of the target with a poor

estimate of the power spectrum of the random variable, as described in

(6, Chapter 11, Section 3). This signal is itself a random process.

The power spectrum of the correlated reflectivity components is given in

(7,8,9),

S y (k) - IH(kH 2 S(k),

where S (k) is the power spectrum of the white Gaussian noise, S (k) isSxy

the power spectrum of the filtered noise and H(k) is the filter's

transfer function. However, the Fourier transform of a limited sample

of a random process is itself a randomly varying quantity. So, the

convolution results in random signal and resulting ISAR images are

expected to look noisy.

The effects of additive noise are also to be included in the

simulation of the received signal. Adding this term to the equation for

the received signal yields the following:

(t) 1 f(t-T) % e j 2vf.(t-t) + n(t)
uv

The last term is a complex gaussian random process with zero mean.

It is included to model wideband channel and receiver noise. The first

part of the signal is normalized to power equal 1.0, and the variance of

the additive noise term is varied to produce a desired signal-to-noise

power ratio (SNR),

P
-

SNR - !
n
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where P and P are signal and noise power over the receiver bandwidth.

P s 2
Further, SNR - , A where A is the signal amplitude, and since

n B

A2 - 1, then B - 1/StM . Thus the standard deviation of the real and

imaginary terms of complex white Gaussian noise are B/J.

Because of the linearity of the Fourier transform, the result of

ISAR processing the above mixer output, with the additive noise, will

add to the image a signal which is the Fourier transform of the sampled

white gaussian noise. Since the noise is white, it is expected the

image will have noise added to it all over the field of view.

0

-p

*1
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4.2 IMPLDIENTATION IN THE SIMULATION

The computer simulation, written in FORTRAN, was modified to

calculate a received mixer output signal from a diffuse target. The

scattering function of the target is input into the simulation, which is

a delay-doppler mapping of the reflected signal power for each

resolution cell. The target is slowly fluctuating, so the random

reflectivity of each call of the scattering function is statistically

correlated in time. This implies an outer loop which increments

resolution cell. The algorithm of this computer program is presented in

Figure 4.2.

Read in Scattering Function
Find Sum of Total Power within Scattering Function
Initialize 20 Array for Mixer Outputs to Zero (FRAME)

Increment Resolution Cell (. j)
Initialize Random Reflectivity Recursive Filter
Increment Burst Number m

Increment Pulse Number n
Pick Correlated Random Reflectivity
Calculate Mixer Output s(n)
Sum Mixer Output to 20 Frame (n,m)

End Loop
End Loop

End Loop

Calculate Desired Noise Standard Deviation from SNR

Increment Burst Number m
Increment Pulse Number n

Pick White Gaussian Noise
Normalize Mixer Output
Add Noise to Mixer Output

End Loop
End Loop
End

Algorithm of Mixer Output Simulation
Using a Correlated Statistical Target

and Additive White Noise

Figure 4.2

I
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For each resolution cell in the scattering function, one at a time,

the mixer output for all pulses in all bursts is calculated using random

number generators to get a complex Gaussian random number for reflec-

tivity. The mixer outputs are stored in a two-dimensional array. The

whole received signal is the point-to-point sum of two-dimensional

arrays from each cell.

After all cells have been incremented, and the two dimensional

array contains the mixer output resulting from the whole target, the

mixer outputs are normalized to power equal 1.0. Then Gaussian random

number generators are used for additive noise with power adjusted to get

a desired signal-to-noise ratio.

U. Returning to the part of the algorithm where the mixer output for a

pulse is calculated, the mathematics which is used to carry this out is

developed in the following way. As described before, the received

signal is composed of components from all resolution cells in the target

and includes added noise. Assuming the received pulse's envelope f(t-T)

is unity, the received signal can be expressed as,

" r(t Z 'b e eJ(W i + W r)t + t.

s r Uv

This signal 'r (t) is mixed with ej wi the carrier signal, to give the
r

mixer output signal which can be written as,

i S m = Z b e rt + n .
~m E e w n

u,v
-J
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Letting 8i - rt, with i indicating pulse'number, and

b a b(u,v) - IbleJob then,

s m - Z IbIe(b i + nm .~U'V

Since cos(Ob8I) - coso, cose. + sinb sinO i  ,

and sin(Ob - ) - sin* b cose i - cos*b sinO,

s m  r {(Ibcos b cose i + bsinb sine.)
Upv

+ j(Iblsin0b ccse - IbIcos b sin6 .)}.

Let A - IbIcosob, and B - }Ibsinob, where A and B are Gaussian random

2 2 1variables with zero mean and variance aA 01 A • ?(u,v) then,

Ss Z {(A cose. + B sine.) + j(B cose. - A sin8.))
m 2 1

u'v

The computer progrz= listing which incorporates this implementation

of random reflectivity is presented in Appendix 7.1. The listing

includes subroutines for random number generation which were supplied by

the University. The function NRMRAN generates a normally distributed,

uncorrelated random number of specified mean and variance equal 1.0.

Zero mean was chosen, and the standard deviation is choosen to result in

the desired power. The reflectivity is correlated from pulse to pulse

by the subroutine SLATTER. However, the reflectivity of each resolution

cell is made independent.

11
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I

.A:-;.?e r a Po:nt Target with

" ,. iced Random Reflectivitv

* g~iro

4 -:I !UA' IN 44

Several .i fforeto ta raets were 'sed for ISXR image generation to

.bserve the effects ot correlated random reflectivity and additive

no)i se. First, .in .mage .as generated from a point target, 'ocated in

.iie center )f tho field of view, using a correlation interval length of

,.0 puise intervals, and no added noise. This image is on the left (a)

in Figure 4.3. A correlation interval of 4.0 means a correlation t ime

i"e I le *ihe random roflectivitv. Also, the iae noise. :s <ncon-

e! w een ursts . ao, the image is less random in the ieav :Imension,

.:I. 'i . :.may ':

,,,nera~' fr-m 'he -.-ame point *arget Ising the same 2r.mk i nt,±r-vc

:1' .',!u r:i' e r':,, i-. s~n r i n SNR "f''I loio l>t" .. ::s .tto i

no a{llel no ise has iittle effect on the image.

-- . . . . . . . . ..-
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(a) (b)

ISAR Image of Spherical Target with Random

Reflectivity and Additive Noise

Figure 4.4

For a comparison, an ISAR image was generated from the spherical

target, using correlated random reflectivity of correlation interval 0.5

pulse intervals, and additive noise with SNR of 0 decibels. This image

is shown on the left (a) in Figure 4.4. On the right (b) in the same

picture is an image resulting from processing a mixer signal containing

oniv additive noise. The result is completely random noise ano is

Several images were generated in a parametric study of the effects

,- the correlation interval value. A point target in. the ,enter f he

image 3s used. No added noise was put in the mixer output signal. Six

.I MO -ere generated, each with a different value of correat ion

-tx



I
-45-

interval. The results are displayed'in Figure 4.5 with horizontal being

i the delay dimension. The correlation interval value increases from

image to image going from top left (a), to top right (c), to lower left

(d), to lower right (f). The noise in the image seems to progressively

narrow horizontally into a vertical line, and then the line shortens

toward a point, as correlation interval increases. The six correlation

interval (CI) values are (a) CI = 0.5, (b) CI = 4, (c) CI = 10, (d) CI =

128, (e) CI = 256, and (f) CI = 1100. The noisy image becomes a line

when the correlation interval equals 128 pulse intervals, the same

length as a burst, the point at which reflectivity is essentially random

only from burst to burst.

(a) (b) (C)

S(d) (e) (f)

ISAR Images of Point Target Using

Various Correlation Interval Values
Figure 4.5

.4 ~At
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The simulations presented in Figure 4.5 were repeated using the

sphere described previously as the target to be imaged. The results are

presented in Figure 4.6. It is seen that as correlation interval

increases the target becomes more recognizable.

(a) (b) (C)4

4t

(d) (e) (f)

ISAtR Images of Spherical Target Using

Various Correlation Interval Values

Figure 4.6

wI

I, 

,

.. .I. . . I,: " :<T:: .. :::: ? : :?:.. ;: '



-47-

Additionally, examples of windowed ISAR images were generated to

see the effects of windowing on diffuse targets and additive noise. On

the left (a) in Figure 4.7 is a windowed ISAR image of a center point

target having a correlation interval value equal 1100 pulse intervals

and no additive noise. Windowing seems to make this point target look

like an amorphous blob. The image on the right (b) in the same figure

has the same target with additive noise of SNR equal 0.0 decibels added

in the signal. The resulting image has additional blurry background.

These images suggest that using windowing in generating ISAR images in

the presence of noise does not improve image quality.

t-.

(a) (b)

Windowed ISAR Images of Center

.- Point Target
9.

Figure 4.7

a ..
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4.4 POWER SPECTRUM ESTIMATION

As described before, the mixer output from a diffuse point target,

with no added noise, is a temporally correlated random reflectivity

multiplied by a delay-doppler signal. In generating an image from this

mixer output, Fourier transforms are calculated. The result can be

viewed as the convolution of the power density of the target, the

desired image, with the Fourier transform of the random reflectivity.

The transform squared magnitude of a sequence of random numbers is

called a periodogram in (6). Also, this is described as an estimate of

the power spectrum of the random process. If the Fourier transform were

an unbiased and consistent estimate of the power spectrum, the error in

the estimate of the power spectrum would approach zero as the number of

samples of the random process gets very large. However, this is not the

case. It is shown in (6) that the periodogram is a biased and incon-

sistent estimate of the power spectrum of a random process. The esti-

mate is biased because the expected value of the periodogram does not

equal the power spectrum using limited sample length, and the estimate

is inconsistent because the variance of the periodogram does not

approach zero as more samples are used in the calculation. This means

that ISAR processing as it is conventionally performed cannot accurately

reconstruct the power density of of a diffuse target, equivalently the

scattering function. An approach for improvement of the power spectrum

estimation is the Welch method described in (6). In this method, the

data is windowed before the periodogram is computed and several of these

smoothed periodograms are averaged. This would require the averaging of

several reconstructed images. The Welch method yields a power spectrum

P& "
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estimate which is biased for limited sample length, though asymptoti-

cally unbiased, and the variance of the estimate is expressed as

follows.

Variance [B (w)I 1 p2(w)B K

where B is the Welch estimate, K is the number of periodograms averaged,

and P is the power spectrum of the random process. The Welch method

sacrifices spectral resolution and bias for a consistent spectral

estimate. Using the Welch method with limited data probably will not

result in a good reconstruction of a scattering function.

I
N

%
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5. SUMIARY AND CONCLUSIONS

This thesis work consisted of developing an ISAR imaging simulation

using a computer program to input a target scattering function, generate

a simulated mixer output signal, and reconstruct an image of the target

from the mixer output signal. In the results of Chapter 3, the

reflectivity process was fixed at a constant value for each resolution

cell, allowing the verification of the ISAR processing since the

reconstructed image is expected to look like the scattering function of

* the target.

With the ISAR simulation verified, the next step reported in

Chapter 4 was to implement random reflectivity and additive noise. This

was to use the slowly fluctuating target model described in (5). The

complex random reflectivity process was correlated in time using a

recursive filter. The random reflectivity was kept spatially

independent. The results of generating ISAR images using random reflec-

tivity of diffuse targets and additive noise are presented. The

reconstructed images show that the random reflectivity has great effect

, on the image. As a result, the actual target cannot be recognized from

the image unless the random reflectivity is highly correlated.

The conclusion is that ISAR processing attempts to measure the

power density of the mixer output signal which would look the same as

the scattering function, but the random reflectivity makes the

calculated power density a random quantity and so the result is a noisy

image. Fourier transform techniques yield unsatisfactory results in

this application of power spectrum estimation theory.
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7. APPENDIX_
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APPENDIX 7.1

Program Listings

S.. The listings of the Fortran-77 programs and subroutines used to

simulate the mixer output signal and perform ISAR processing to

reconstruct an image are included in this appendix. A brief description

of each program and subroutine follows.

PROC3, listed in Figure 7.1, calculates a mixer output signal from

* an input scattering function data file. A non-statistical target is

assumed. Subroutine TARGET reads in the scattering function.

VT - Tangential velocity of the target

XFOV, YFOV - Image field of view dimensions

CRX, CRY - location of center of rotation in scattering function

TI - pulse width (sec)

T3 - Burst length (sec)

"U W - angular rotation rate in radions per second

BW - bandwidth of burst

FO - lowest frequency (Hz)

FC - center frequency

DF - frequency step size

WWL - wavelength

N - number of pulses and bursts

XES - resolution in meters

RWCF - range walk correction factor

Subroutine IMAGE2D, listed in Figure 7.2, performs ISAR processing

to reconstruct an image from radar received signals. The discrete

Fourier transforms are implemented using Singleton's Fast Fourier

transform algorithm.

aaa'F L 1
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PROC4, listed in Figure 7.3, calculates a radar received signal

from an input scattering function data file. This routine is a

modification of PROC3 to include the effects of a statistical target and

additive noise.

CI - correlation interval (# samples) of random reflectivity

SNRDB - signal to noise ratio for additive noise in decibels

Subroutine SCATTER, listed in Figure 7.4, generates components of

complex random reflectivity which are correlated in time by recursive

filtering white gaussian noise.

Subroutine IMAGE2DW, listed in Figure 7.5, uses data "windowing" as

part of the Fourier transform techniques which generate an image.

VI

A.

Pk
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PROGRAM PQOC3

REAL LAMDA( 129. 12e)
Complex FRAME(256.256)
Int*ger*4 lung
:,vmYon blkl, fljns

C.
C. ISAR IMGING USING A STEPPED-FREOUENCY WVEFORM
C.
C* BOB LEWIS. DECEMBER 196

C2-2./C
CI-3.S192

RES-@.:

V RES-RE S
XRES-RES
WLCF-O .63
FC-C/WLCF
RWCaPI 2/YRES/N
XFOV=.d.XRES
v'FOV-N*YRES
CRX(N/2-I ).*RES
CRYu-N/2-1 ).YRES
TIinZ.*YFOVY/C
Ti 2-T1/2
S.I-C/(2.YRES)
FS-FC-S.J/2
WL-CF9
THETA-mWL/(2*XRES)

W-YT/RANGE

r3=THETA ( W.N)

DF9W/(N-',I CALL fcr'.at('Enter output fulenamt~ '.lung)

C...... READ IN THE TARGET'S SCATTERING FUN'CTION ***.*.
CALL target(LA1BDA)

C***** CALCULATE MIXER OUTPUT SIGNALS ANJD STORE IN FRAME...

DO 168 TinG.,T4,T3

DO 50 K-1.128

Q(K 08.
50 CON71NUE

DO as J-1.129

PROC3

Figure 7. 1

ON~
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VC2W1J.C2
OtWCF-V*TeRWC
DO 79 1-1.128

lF(L'I9DA.1,J).EO.9.)GO TO 76
AA-L~m8DA IJ)*.

Y-C 1-1)*YRES
DELAY-C2*Y
DO 66 K-1,.128

KI-K-1
Fl-KI.DF*FS

PHI-PI2.FI .(DELAY-VC2*T).Kl *RWCF
S(K)-S(K)*A*COS( PHI)

Q( K )wQC K ) ASIN( PHI)
88 CONTINUE

79 CONTINUE
Be CONTINUE

DO 98 Kal.12e
FRAME(K+4.L)-C1MPLXSK,O(K)

96 CONTINUE
L-L.I

166 CONTINUE

C..**.* NORMAL12E MIXER OUTPUT SIGNAL TO PEAK-I .0 ... e.

DO 126 L-1,256
DO 116 W-1.256
Pk-MX(PK.AS(FRAELK-'r)

116 CONTINUE
120 CONTINUE

PKINV$-l ./PK
DO 146 L-1.256

DO 136 K-I1,256
FRM*. -RM(,K*KN

136 CONTINUE
146 CONTINUE

Co***** RECONSTRUCT THE TARGET'S IMAGE ........
CALL nmago2t)(FRAME)

ond

PROC3

Figure 7.1 (Continued)



-57-

Sur ow. t n&9Z- maetramt)
Real imag e(256.256)
Complex 4(256)
Complex 4rame(256,256)

C*

CeThis Subroujtinie reconstructs a radar image
CO by using Fourier trans4om techniques *

CO Boo Lewis. December 1989

C***** e DELAY DIMENSION RANGE PROFILES *.....ee*e
00 126 j-1.256

= f(~~D e )cgCfJ( fr amfe( i-Ij) )

ee CONTINUE
CALL FFT(f.M)
DO 116 1-1,256

frame .j)-con g(f(n))ee.6639663
119 CONTINUE

126 CONTINUE

, ~~~Co****** DOPPLER DIMENSION PROFILES e**i**

1% DO 156 t-1.256
DO 125 jul,256

f(j)=cmplx(6. ,.)
125 CONTINUE

DO 136 j-1.6
4

+(j.04)in4ram*(t,j* 128)
f(j+128)vwramv(ij+64)

139 CONTINUE
CALL 4#t(4.M)

'" DO 146 j-1,128

image(ij+128)-abs(*(j))**2
ma9* (i.j)=abs(4( 1289 '.2

140 CONTINUE

156 CONTINUE

nbytesm256*256*4
CALL fwrite(luns.image.nbytes)
Return
END

IMAGE 2D

Figure 7.2
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PRON" PROC4
REAL LMOA(120,123)
lnteq~re4 Ift0#40, lA402
Comalex FRAE( 256,256).OCdOIS
t~cwvyon til, luns
Comm~on /bIX3/ Y1,Y2,IRANDI,IR4ND2
Dimensioni GAUSS(2)

C*
C. ISAR WITH CORRELATED COMPLEX ON OM REFLECTIVITY
C. OIND ADDITIVE COMPLEX SAI104 WHITE NOISE 0
Ce 0 LOWhIS. DIE ER 19"

Cin3.ES
C2-2./C
PIin3. I4ISV27
P12-6.2931854
RES-6 .6
Y RE S-RE S
XRE S-RE S
NE128
WL-4.63
FC-C/WL
XPG..O.XRE
YFOV-OYRES
CRX-(N/2-1 )OXRES
CRY(N/2-I ).YRES
T~I-2.9YFGO/C
T12-TI/2.
wdC/( 2. .YRES)

F9SFC-6W/2
fT2.Al^NWL/(4.XRtS))
RAGEnI2.5.!852.
VT-460.*1852./3416.
WBVT/R4GE
T 3=THETA/ (WON)
T2=T3/(N-I)
T4-e4T 3

PRINT *,'Input correlation 'nterval

C****** READ IN TH.E TARGET'S SCATTERING FUN4CTION*.****
CALL tatget(LAMiBOA)

IMMDI-32249, 219
I ~-

PROC4

Figure 7.3
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C*00:e:e**1.11 TOTAL POWIER INSCATTER1ING PNC Lh*ISDA eeee...110
Ce......1411 INITIALIZE 20 ARMY CONTAINING 141XER OUTPUT SIGNAS 0....oe

PRWE (I *6.J 4 il
30 coNTINUE
46 CCNTINUAE

CID**-** CALCULATE M4IXER OUTPUT SIGNLS N4D STORE IN FA011E *00.ee
C~ooo Loops " & 166 change resolution cell ***
CeO~e.. Loop 66 steps burst * , Loop 64 steps pulse 0 0*000*0
C~~.. Subroutine SCATTER picks random ro4lectivity 41000

X-(J-l)*XRES-CR(

DO 66 1-.129

IF(LAMSOA(I.J).EO.@.)OO TO 96

Yu(I-i)oYRES

CALL NQRd( 1RN1 , ItAH02,GAUSS)
YI-GASS( I)*G
Y2-GAUSS(2) eG
DO "6 T-6.,T4,T3

00 66 K-1l.126

PHI-P124F~ e(DELAY-V*T)
CALL SCATTER(G,CI .A,3)
S-A*COS( PHI -SoSIN( PH1
Q-6eCOS(PHD*)A*SI4( PHI)
FR1E(L.K.64)eFM~1E(L..64)'O1PLX( S.0)

pe 94 CONTNE

166 CONTINUE

C***-.. Calculate standard deviation 04 additive noise 4rm SN~R asooeoe
C**e*ee Pick additive white Gaussian noise values 0*4104194e
C110041iiiiNo:aliz Mier output sgnalFRAEe to powiiipn1.9 000

SONOISm1111OIS40.7371w 00 126 Lin6S,192
00 116 Xm65,192

CALL HA4%W( 11101 , I VD2, MUSS)
so0 I wGAUSS ( I )*SaNOI S
ONGI mQUSS( 2)0504015

.9 PlMEL.K)-AM(L,K)GCS#04OIS
lie CONT INUE
1I" CONTINUE

CALL i mage20( F~i1E)
STOP

PROC4

Figure 7.3 (Continued)
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Ce..... This subrotating generates camlex random ro~lectuv t*****::

Ce.....00 values wh~ich are correlated in time by recursive **
I.. *ter ngwh~. avS, an nolSo, suppIe Ojr, 4pMpAN'. *

C...... Cl-corrolation inteirval k.W samplais)
Ce..... Bob Leiiiis. Dec. 193. ec.

dimension gauss(2)

CALL nrmran(irandI~irand2,gauss)
xilgaus I )

g2;a. Is(2) '2

alpha--I .8/ci
rhoinexp( alpha)
gaffmam ( I .-rhoCC2) eel .5

y I rhoey I 4gailwi*x I
2rhoev2*gaamiaox2

re turn

SCATTrER

Figure 7.4
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Complex *raft.(256,256)
dimenioen wl(129)

C. mn/~k/ln

CC: This Subroutine reconstructsa radar image

C* by using windowd Fourier transforms

C*..e**. CONSTRUCT WINDOW eeee.e..e..e.
DO 16 1-1.129

10 CONTINUE

Co****** DELAY DIMENSIO1 N GE PROFILES *e*...
DO 120 j-1l.25 6

DO 166 1f1,256

MCONTINUEi 6)I(r
DO 111 1-1,128

li CONTINUE
CALL FFT(f,m)
DO 118 1-1,256

4rame(i,j)nconjg(4(i))0.63 9 063
116 CONTINUE
120 CONTINUE

Co****** DOPPLER DIMENSION PROFILES
00 156 1-1 ,256

DO 125 j-1,256
4 ( j )cmplx(6 0

125 CNIU
DO 136 j-n1,6 4

136 CONTINUE
DO 131 j-n1,129

4 (.j 64)=#( j 64) owl(4)
131 CONTINUE

CALL *Et(#,M)
DO 140 j-1n,12S

146 CONTINUE
16 CONTINUE

nbvtte-2560256*4
CALL #writt(lun.image,bytesi
Ret u rn

END

IMAGE ZDW

Figure 7.5
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THE USE OF MAXIMUM-LIKELIHOOD ESTIMATION FOR FORMING
IMAGES OF DIFFUSE RADAR-TARGETS FROM DELAY-DOPPLER DATAt

Donald L. Snyder
Joseph A. O'Sullivan

and
Michael I. Miller

Electronic Systems and Signals Research Laboratory
Department of Electrical Engineering

Washington University
St. Louis, MO 63130

U
N ABSTRACT

The expectation-maximization algorithm for computing maximum-likelihood estimates
iteratively is used to develop a new approach for processing inverse synthetic-aperture radar
data to form images of fluctuating, diffuse radar-targets. The scattering function of the target
is imaged by jointly estimating the power spectra of wide-sense stationary reflectivity-processes
occurring in all the range cells that span the target. The complex-valued reflectivity processes
are also estimated. The results we obtain apply to imaging-radar systems operating at radio and
optical frequencies when target echos have no specular or glint components.

t This work was supported by the Office of Naval Research under contract N00014-86-K0370.
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1. Introduction

An inverse synthetic-aperture radar (ISAR) system is used to form an image of a radar

target. This is accomplished by illuminating the target with a series of pulses and observing the

return echos. Each patch on the target introduces a certain amount of propagation delay and

doppler shift to a pulse it reflects, the amount depending on the range and range rate of the

patch relative to the radar system. The received signal for each illumination is a complicated

superposition of the reflections from all patches that make up the extended surface of the

target. The goal in processing the received signal is to produce an image of the target.

The design of an ISAR system includes the selection of the transmitted waveform, the

selection of a model for the reflection process by which a portion of the transmitted waveform

is returned to the receiver, and the selection of the algorithm used to process the received

waveform to create the target's image. The beam-width of the radar antenna relative to the size

of the target is also a design consideration; images can be produced by either scanning a

narrowly focused beam over the target in some type of raster pattern or by illuminating the

entire target in spotlight mode with a wide, relatively unfocused beam. Our concern will be

with forming images of rotating, rough targets using a spotlight-mode radar.

Stepped-frequency and linear-FM chirp are two modulation formats used with transmitted

pulse-sequences in spotlight-mode radar-imaging. Stepped-frequency pulses are described by

Prickett, Wehner, and Chen [1], Ruttenberg and Chanzit [2], and Chen and Andrews [3]. The

target is illuminated with a sequence of N pulse-groups, where each group is identical and is

formed from a sequence of N narrow pulses having equal incremental steps in frequency. The

usual approach for processing delay- and doppler-shifted echos acquired by illuminating a

rotating target with this waveform consists of two steps. The first is to place the data,

consisting of one sample-value per transmitted pulse, into delay (or, range) bins by separately

Fourier transforming the N sample values from each pulse group. The resulting delay-binned

data are placed in the rows of an NxN matrix, where each row contains the transformed data

from one pulse-group. In the second step, the columns of this matrix are Fourier transformed

to obtain a doppler (or, cross-range) profile at each delay. The resulting two-dimensional array

is intended to be the target's complex-valued reflectance function in delay (range) and doppler

(cross-range) coordinates, the magnitude or squared magnitude of which can be displayed as the

I
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I
target's image. This processing based on two-dimensional Fourier transforms is derived using a

deterministic analysis that does not account for statistical properties of the reflectivity or any

noise that may be present.

Wideband "chirp" pulses, having an instantaneous frequency that varies linearly with time,
are also used for radar imaging. The common approach is to transmit a series of pulses, each of

which has an identical envelope and chirp rate. A variety of processing approaches are

described in the literature, including two-dimensional Fourier transformation by Mensa [4] and

Walker [5] and tomographic reconstruction by Mensa [4] and Munson, O'Brian, and Jenkins [6].

A variant of the stepped-frequency format in which each narrow pulse in a pulse group is a

chirp is described by Blahut [71

Bernfeld [81 introduced the concept of using chirp-rate modulation with processing based

on tomographic reconstructions to image the target's scattering function for radar signals having

a large time-bandwidth product. With his approach, the target is illuminated by a sequence of

linear-FM chirped pulses, with each pulse having a distinct chirp rate. Bernfeld notes that the

y .. output of a matched-filter receiver for a radar waveform with an infinite time-bandwidth

product is a line integral through the scattering function, where the angular orientation of the

line of integration for a pulse is a function of the chirp rate of that pulse. This observation

suggests using the same algorithms as used in x-ray tomography to determine the scattering

" ~function. Snyder, Whitehouse, Wohlschlaeger, and Lewis [9] extended Bernfeld's approach to'4

include waveforms with more modest time-bandwidth products. This is accomplished by noting

similarities to the tomographic imaging of radioactive tracers, where ideal line-integrals are not

available.

The approach we describe in this paper can accommodate the stepped-frequency and chirp

formats as well as others. It represents a continuation of our examination of how the

,. -' approaches currently used in emission tomography can be applied to radar imaging. The

method we have described in [9] is adapted from the best algorithm for time-of-flight emission

tomography when the processing of the data is required to be linear [10]. A more fundamental

approach described by Snyder and Politte (11] leads to nonlinear processing and improved

-" accuracy in forming images of radioactivity distributions. In this paper, we describe the initial

%.42
." , '*
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results we have obtained in adopting an analogous approach for radar imaging. This relies on

the use of a mathematical model for data acquired in a spotlight-mode radar and on the use of
the method of maximum-likelihood estimation.

Van Trees [12] and Shapiro, Capron, and Harney [13] describe models for fluctuating,

diffuse radar-targets. The models are based on the assumption that the surface of the target is

rough compared to the wavelength of the radar illumination. The reflectance is modeled as a

Gaussian wide-sense stationary, uncorrelated scatter (WSSUS) process, which is uncorrelated in

range and temporally stationary. Such models are accurate for some targets in radio- and

optical-frequency radar-imaging systems; but not all. An important effect not included in our

present results is that of glint or specular components in radar returns. We are currently

attempting to extend our approach to include these additional effects.

Model based approaches that use statistical estimation-theory techniques appear less

frequently in the large liteiature of radar imaging. One example is that of Frost, Stiles,

Shanmugan, and Holtzman [141, who use a multiplicative model and Wiener-filtering techniques.

Our approach differs in that the model we adopt for the return signal is more complicated than

a simple multiplicative one and depends explicitly on the transmitted waveform through a

spatial integration over the target. We also do not restrict the processing to be linear; in

particular, we show that the processing of the received data for producing the maximum-likeli-

hood estimate of the target's scattering function is not linear.

Radar imaging systems generally produce estimates of one or the other of two quantities

that can be viewed as the target's image. Some approaches produce an estimate of the target's

complex-valued reflectivity as a function of range and cross range, while others produce an

estimate of the target's scattering function. For the new approach we describe, the reflectivity

process is modeled as a complex-valued Gaussian random-process that is temporally stationary

and spatially white. The scattering function is the power-density spectrum of this process as a

function of delay. We treat both the reflectivity process and its second-order statistic, the

scattering function, as unknown quantities. The iterative approach we develop yields the

maximum-likelihood estimate of the scattering function and, simultaneously, the condition-
al-mean estimate of the reflectivity based on statistics which are consistent with the estimated

-3 -
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scattering-function. Thus, both of the quantities treated separately in other imaging schemes

are produced simultaneously with our new approach. This is unique to our approach, and we

feel that it is important.

We will develop a necessary condition, called the trace condition, which the maximum-like-

'4 ~lihood estimate of the target's scattering function must satisfy. This equation appears to be very

hard to solve directly. As a consequence, we reformulate the imaging problem using the

I concept of incomplete-complete data spaces and then use the expectation-maximization

algorithm to derive an iterative algorithm for producing the maximum-likelihood estimate of the

* .-scattering function. This procedure also yields the conditional-mean estimate of the reflectance.

The technique we use to accomplish this parallels that described by Miller and Snyder in [15]

for power-spectrum estimation and extends their results to include indirect measurements of the

process whose spectrum is desired; the process is now measured following a linear

transformation and in additive noise. As shown by Turmon and Miller [16], this approach to

spectrum estimation results in estimated spectra with less bias and mean-square error than other

approaches discussed in the literature. We expect similar improvements will be seen in radar

imaging of scintillating, diffuse targets when this new technique is used.

'4.

:!
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2. Model

The model and notation we shall use closely follows that of Van Trees [12, Ch. 13]. The

complex envelope of the transmitted signal will be denoted by 2ET1/2s.rQt) where ET is the

transmitted energy and sT(t) is normalized to unit energy. Thus, the transmitted signal is given

by

-rRe [. R ( t) exp(j2f jt)], ()

where fo is the carrier frequency of the radar. For a stepped-frequency waveform consisting of

N pulse groups with N pulses in each group, the complex envelope is given by

N-IN-I

stt} T Z p(t-nT,,-iTg)exp(j2i,1.(t-nTp-iTo)),
9-0 n-0 (2)

where Tp and Tg denote the time interval between pulses in a group and between groups,

respectively, An is the increment to the carrier frequency fo of the n-th pulse in a group, and

p(t) is the complex envelope of a pulse. For pulses typically assumed, the envelope Ip(t)l is a

narrow, rectangular function, and the phase arg[p(t)] is zero. For a sequence of N pulses having

chirp-rate modulation,

N-!Itl

ST(t)- Y p( - tTP)exp( j~r,6(t -i PT)2 ),,-o (3)

where fi is the chirp rate of the i-th pulse, and iTp is its delay.

Patches on the target with a two-way delay in the interval [r,r+Ar) reflect a signal that is

incident on the patch at time t with strength b(t.r)Ar. Consequently, the complex envelope of

the received signal sR(t) following the illumination of the target by sT(t) is given by the

following superposition of returns from reflecting patches at all the two-way delays r

SR(t)= 2E2- fsT(t- )b (t-rr )dr. (4)

Van Trees [12] and Shapiro, Capron, and Harney [13] discuss the reflectance process b(tr)

for targets that are rough compared to the wavelength at the carrier of radio- and

--



a
optical-frequency radar-systems. For such diffuse targets, without any glint components in the

return signal, b(t.r) may be taken to be a complex-valued Gaussian random-process with zero

mean and covariance

E[bft, r)b*(t-, r')] = K(t- C, r)6( r - r'), (5)

where "*" denotes complex conjugation, the impulse function in delay results because of the

assumption of uncorrelated scattering, and K(t,r) is the covariance function of the reflectance at

each delay r. The Fourier transform of K(t.r) with respect to t is the scattering function S(fr)

of the target,

Stt, r) =fJ K(t, r)exp(-j2r /t)dt. (6)

This is the power-density spectrum of the reflectance process for all scattering patches at delay

We will model the complex envelope of the total return signal r(t) as

r(t) - sR(t)+ w(t), (7)

Wwhere w(t) is complex-valued Gaussian white noise that is uncorrelated with the reflectance

process. The mean of w(t) is zero, and the covariance is

E[w(t)w*(t')] - N 0 6(t - C). (8)

The scattering function S(f,r) of a diffuse, rotating radar target provides an image of the

. target in doppler (or cross range) and delay (or range) coordinates. S(f,r)AfAr is the

• .C mean-square strength (or power) of the reflectance of all patches on the target having a doppler

shift in the interval (f,f+Af) and a delay in the interval [r,r+Ar). We may, therefore, state the

problem of imaging a diffuse radar-target as that of estimating the scattering function S(fr) or,

-, equivalently, the covariance function K(t,r) given radar-return data (r(t). Ti t <5 Tf) on an

observation interval (Ti,Tf).

i - " ., . - .. • , " • - .. . 'c , r.,. .. € , , . . . .



discrete model

In anticipation of using discrete-time processing of radar data to produce images, we now

* state the discrete version of our model as follows. We are given N samples of the

complex-valued radar-data corresponding to (7),

r(n)=s,(nI-w(n), n-O,l .. N-I, (9)

where w(n) is a white Gaussian-sequence with zero mean and covariance

E[w(n)w*(n')] - N 0 6..., (10)

and where the signal samples corresponding to (4) are given by

SR(n)- 2E_ s'(n,)b(n, 0, n-0, 1. N- i.
... (1l)

In this expression, we define sT(n.i) and b(n,i) in terms of the transmitted signal and the

reflectance process, respectively, according to:

S r(n, i) - s (nit - iAr),

(12)

and

b(n,i)-b( nt-Ii~ r,i r Ar,
(13)

where At and Ar are the sampling intervals adopted in the discretization in time and delay,

respectively. We assume that the target has a finite extent, so b(ni) and, therefore also, terms

forming the sum in (11) are zero for i outside the I values m, m+],...m r+l-I starting from the

minimum two-way delay corresponding to m. This discrete reflectance is a Gaussian sequence
awith zero mean and covariance given by

E[b(n, i)b*(n ', )] K(n - n', i)6,. .  (14)

The discrete scattering function S(fi) is the Fourier transform of K(ni),

-7-
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I
S(f,i)- Z K(n,i)exp(-j2nrfn). (15)

3 The imaging problem for the discrete model is to estimate S(fi), or equivalently the covariance

function K(n.i), for all frequencies / spanning the target in doppler, and for all delays i

spanning the target in delay, given the radar data (r(n), n-O,. 1.... N-I).

matrix model

These discrete equations may conveniently be written in matrix form as follows. Define r

to be the received-signal vector of dimension N,

r(O)

r(l)

C' r - S R+ W (16)

.r(N-l)

where the N-dimensional vectors, sR and w, are given by

t( I )( I(O

s'_ = •and w" (17)

=s(N- - Yw(N 1)) (17)

Also, define S* as the NIxN rectangular matrix expressed in column-block form in terms of I

separate NxN matrices according to

S,

,2... * = ,(18)

where Sj is an NxN diagonal matrix containing sample values of the complex envelope of the

transmitted signal sr(t),



sr( 0 m~J 0 0 0

0 sTr(1,m j) 0 0

Si-( 0 0 (19)

00 ST(N-1 m +j))

Further, define the reflectance vector b of dimension NJ in the column-block form of I vectors

according to

b(0)
b(1)

b (20)

b(I-I))

where each b(i) is a vector of dimension N,

b(0, m +i)

b( I ,mrni)

b~t) (21)

(b(N - I ,m+&

Using (11) and these definitions, we can now express the N-dimensional signal vector SR of (15)

and (16) as

SRt - 12-,E, S b, (22)

where "+" denotes an Hermitian transpose. In terms of these defined matrices, the received

vector has zero mean and covariance

K,- (rr') -E(sxs,)+ E(ww')

= 2 T SF ( b )S + 1.(23)

Then, since

E(b(i)bi(j)) -K(i)6 1 1j, (24)



U
where K(i) is the Hermitian-symmetric Toeplitz-matrix

CO K m0,-ni) K*(I,m-i) K*(N-l,m~i)'

3 K(i, ( Ki ,.m +) K(O,m+ i) (25)

K(N - I, m ) K(O,m+t)

it follows from (23) that the covariance Kr of r is given by

K, = 2Er S *KS + Nol, (26)

where K is the block-diagonal NIxNI dimensional matrix defined by

K = K(1) 0 0 (27)

0 0 0 K(I - 1))

The i-th diagonal block K(i) of K is the covariance matrix of the reflectance process at the i-th

delay bin. The imaging problem in terms of these expressions is, then, to estimate the matrix K

of (27) given the data vector r of (16). The scattering function then can be determined from K

by using (15).

I _ 10-
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3. Maximum-Likelihood Imaging for the Incomplete-Data Model

For reasons that will become evident in the next section, we term the N-dimensional data

vector r the incomplete data for the radar-imaging problem. The model given in the last section

for this incomplete data is that r is normally distributed with zero mean and covariance

specified in (26). Given the incomplete data, we wish to estimate the covariance K of the

reflectance process, as defined in (27). To do this, we adopt the maximum-likelihood method

of statistics, which selects K to maximize the incomplete-data loglikelihood

LdfK) -ln(det(2ES"KS + NoI))-!r(2ES*KS+ N,)r,2 2 (28)

where the maximization is subject to the constraint that K be an admissible matrix, where by an

admissible matrix we mean a matrix having the block-diagonal form in (27) with each diagonal

block being a Hermitian-symmetric, positive-semidefinite Toeplitz-matrix.

We now derive a necessary condition, termed the trace condition, which the matrix

maximizer of the incomplete-data loglikelihood (28) must satisfy. In principle, this

equation specifies the maximum-likelihood estimate of K. If K maximizes Lid(K) of

(28), then Lid(K.,K) < Lid(K) for 6K small. Equivalently, the first derivative is zero,

L,,(K - a6K) - L,,(K) (29)lirn 0.o  I" 0,

for all matrix variations 6K with a real such that K + a6K is admissible. As shown in the

Appendix, this implies the trace condition,

Tr((2ErS- KS - NolI)-'(rr- 2ErS" KS- No)(2ErS.KS - No)-'S6KS)=0, (30)

which must be satisfied by the maximum-likelihood estimate K. Burg, Luenberger, and Wenger

[171 have studied an equivalent problem of Toeplitz-constrained covariance-estimation and have

,. derived the trace condition using a different approach.

There are NI unknowns in K. Since 6K must be a block diagonal matrix of

. Hermitian-symmetric Toeplitz-matrices, there are NI parameters in 6K that can be varied.

These variations in the trace condition (30) generate NI equations in the unknown elements of

K. Thus, in principle, the trace condition produces enough equations to determine the

~- 11 -



I
maximum-likelihood estimate K. However, the equations are complicated due to the inverse

matrices appearing in (30), so it does not appear to be feasible to determine K directly from the

trace condition, which motivates our development of the iterative approach in the next section.

SThe trace condition is only a necessary condition which the estimate K must satisfy. For it to

be sufficient as well, the second derivative must be negative along all admissible variational

directions 6K. In the Appendix, an expression for the second derivative in the direction 6K is

obtained.

In the next section, we will develop an iterative procedure for determining a sequence of

estimates that increase the likelihood at each iteration stage. We will demonstrate that the limit

point of the iterations satisfies the trace condition (30).
V
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4. Maximum-Likelihood Imaging for the Incomplete/Complete Data Model

That the trace condition (30) cannot be solved directly for the maximum-likelihood

estimate of K motivates the indirect approach we now take of embedding the imaging problem

in a larger, seemingly more difficult problem. The result will be an iterative algorithm which

when implemented produces a sequence of admissible matrices K(O), K(), ..., K(k), ... having the

property that the corresponding sequence of incomplete-data loglikelihoods LidK(O)1, LidLK(l)],

Lid[K(k)], ... is nondecreasing at each stage.

Fuhrmann and Miller [18] have recently shown that maximum-likelihood estimates of

Toeplitz-constrained covariances which are positive definite do not always exist when given

only one data vector r. A necessary and sufficient condition for the likelihood function to be

unbounded, and therefore for no maximum-likelihood estimate to exist, is that there be a

singular Toeplitz matrix with the data in its range space. For our imaging problem, this

condition is that there exists an admissible K with

2ETS'KS* Nol

singular such that

r=(2ES" KS+ NI)a

for some complex-valued vector a. In fact, without constraining K further than being Toeplitz,

a sufficient condition that a singular estimate for K be obtained is that No - 0 and there exists a

singular K with r in the range space of 2ETS+KS. The argument for this mirrors that of

Fuhrmann and Miller in [18, Theorem 1], but is applied to the complete data loglikelihood (35).

Furhmann and Miller also showed that even if the true covariance had eigenvalues bounded

from above and below, the probability that there exists a singular Toeplitz matrix with the data

in its range can be very close to one. By restricting the search to Toeplitz matrices with

circulant extensions, they were able to show that the probability a singular circulant Toeplitz

matrix has the data in its range space is zero. Thus, in order for maximum-likelihood estimates

to be nonsingular with probability one for all nonnegative values of No, we restrict the class of

admissible Toeplitz matrices to be those with circulant extensions of period P, where P is equal

to or greater than the number N of data samples available, P 2 N. What we envision in

adopting this constraint is that for each delay i, the N sample values of the reflectance b(n.i), n

-13-
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-0. 1. N-1, are from a stationary process that is periodic with period P, where P could be

some large but finite value. These N sample values enter the incomplete data r according to

(15) and (22). By using the expectation-maximization algorithm of Dempster, Laird, and Rubin

3[19], we shall develop a sequence of admissible matrices that have the maximum-likelihood

estimate of K subject to this circulant extension as a limit point. The approach parallels that of

Miller and Snyder [15] for estimating the power spectrum of a time-series from a single set of

data. An important benefit of introducing the periodic extension and using the expecta-

Ntion-maximization algorithm is that estimates of both the scattering function and the reflectance

process are obtained simultaneously and can be readily viewed as target images in range and

cross-range coordinates; thus, the procedure proposed may be considered to be natural for the

imaging problem because both types of images considered separately in the past are obtained
J directly. For completeness, we also include in the Appendix the equations obtained using the

expectation-maximization algorithm for estimating general Toeplitz matrices when the

assumption of a circulant extension is not made.

We shall introduce a modification of our notation to indicate that the N samples of the
".p

reflectance process are from a stationary periodic-process of period P. Thus, let bN(i) denote

the N-dimensional vector b(i) of (21). We now think of bN(i) as an N-dimensional subvector of

the P-dimensional vector bp(i) formed from samples of the reflectance process over a full

period,

b(O, m -+
b( 1, m + i) (31)

b ) - .b(N-1m-)

b(P- l,m +)

If IN is the NxN identity matrix, and if J is the PxN matrix defined by

0 (32)
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then bN(i) - J+bp(i). Also, let bN denote the NI-dimensional vector b of (20), and let bp be the

P1-dimensional vector with i-th block element bp(i). Then, bN - M+bp, where M is the PIxNI

block diagonal-matrix

J 0(o (33)

(- 0 0 J)

Furthermore, let KN(i) denote the NxN Toeplitz covariance-matrix K(i) of bN(i) defined in

(25), and let Kp(i) denote the PxP circulant covariance-matrix of bp(i). Then, the Toeplitz

matrix KN(i) is the upper left block of the circulant matrix Kp(i), as given by

KN - J" K(iJ.

Lastly, let Kp denote the PIxPI block-diagonal matrix in the form of (27) with the i-th diagonal

block being Kp(i). Then, if KN denotes the NIxNI matrix K of (27), there holds

KN - M*KM.

For use with the expectation-maximization algorithm, we identify the complete data as

(bp,w), where w is the N-dimensional noise vector defined in (16). We note from (15), (22),

and the above definitions that the incomplete data r can be obtained from the complete data

according to the mapping

r- 2,f S*M'b, +w. (34)

The loglikelihood function Lcd(Kp) of the complete data is given by

L( K. - - ,ln(de(35)

2

where all terms that are not a function of Kp have been suppressed.

Let W denote the PxP discrete Fourier-transform matrix scaled so that the columns are

orthonormal,

-15-
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(0 0 0WP WPJ W,

1 w (36)

0 k .2k (P-ilk 36
[ff p WP WP rW

O P-I P-I(P- I

wP Wp P

[ where wp - exp(-j2r/P). Also, let Wp be the PIxP! block-diagonal matrix

W0 0 0

WP 0 0 (37)

(0 0 0 W

Then, bp can be represented in rotated coordinates according to

C()(38)

cp- Wpbp, C• .I) 1(8

= - 1i))
Lwhere c(i) = Wbp(i). The assumption that bp(i) originates from a periodic process implies that

the P1-dimensional vector cp is normally distributed with zero mean and diagonalized

covariance

Ep - E(cc,) - WKW,. (39)

We will denote the (p+iI)-th diagonal element of Ep by ap2(i); this is the p-th diagonal element

of the PxP diagonal matrix E[c(i)c+(i)].

Substituting the expression

K, - W;EI, (40)

into (35) indicates that the complete-data loglikelihood can alternatively be expressed as a

function of Ep according to

- 16 -
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Ld(E,) - l(det(E ))-IoE. , C,
I-I P-II-I P-I

S-t Z -Z 1 Z(41)--X Yl-(a,(i))- YTc,(i)J~'P)
1-O P-0 2 |-0 p-0

where cp(i) is the p-th element of the P-dimensional vector cp(i).

The expectation-maximization algorithm for estimating the covariance of the reflectance

process Kp from the incomplete data r is an alternating maximization procedure in which a

sequence of estimates of Ep having increasing likelihood is obtained first. If Ep(k) denotes the

estimate of Ep at stage k, then there is a corresponding element, Kp(k) . Wp+Ep(k)Wp in a

sequence of estimates of Kp having increasing likelihood. Likewise, to the k-th element Kp(k) of

the sequence of estimates of Kp, there is a corresponding element, KN(k) - M+Kp(k)M, in a

sequence of estimates of KN having increasing likelihood.

Each iteration stage of the expectation-maximization algorithm has an expectation (E) step

and a maximization (M) step that must be performed to get to the next step. The E-step

requires evaluation of the conditional expectation of the complete-data loglikelihood (41) given

the incomplete data r and assuming that the covariance defining the complete data is Ep(k),

Q- Ep E""]" E[ Ld(Vr,) I r, Elk']. (42)

From (41), we have that

Q E I~ ) 11- P-1 1 -1 P-1 21,~ t  (43)
_,P Trrl''= Y In-(o,Cl))- -1 Y E[lI ,Ci)l r, Elk'CI).

10 p-O 10 p-0

The M-step yields the estimate Ep(k+l) at stage k+1 as the choice of Ep that maximizes this

conditional expectation,

- arg max [Q(CEIJEr)], (44)

subject to the constraint that the maximizer be a diagonal covariance-matrix. From (43), this

maximization yields the diagonal matrix Ep(k+l) with (p+iI)-th diagonal element

(a 2 (i)) 
( ' ' )  E C I C ,(i) 1 7 r ,E ] . (45)
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Thus, we may write Ep(k+1) as

'-d"J E[ c,c;Ir ,_rJ], (6

3 where the "d" over the equal sign means that the diagonal terms in the matrix on the left side

equal the diagonal terms in the matrix on the right side and that all the off diagonal elements

on the left side are zero.

3 The above expression (46) appears to be complicated because of the several matrices we

have defined, but it produces a sequence of covariance estimates having a straightforward

3 interpretation. If we form the matrix Kp(k+l) according to

K ~k. 1o , = w v; Er lk I 1 v-'. , (4 7 )

then we find that

I K~(O1) 0 0 0
K,,)/- 0 KPk-)(1) 0 0 (48)

0 0 0 K" 1 (I- 1)]

I where Kp(k+l)(i) is a PxP circulant matrix interpreted as the estimate at stage k+1 of the

covariance Kp(i) of the P-periodic reflectance process at delay m+i. Miller and Snyder [15]

show that the (n,m)-element of this circulant matrix is given by

(k)],i (49)

1 7_ E[b(p,i)b((p.n-m)p,i)jr,K'],(

where <a>p - a mod P. Equation (49) has an intuitively appealing form. If the reflectivity

process b(n,i) could be observed for all instants n - 0, 1, .... P-I in a period and for each i

independently, then the maximum-likelihood estimate of the covariance Kp(i) would be the

arithmetic average of the lagged products

- p I (50)
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Equations (48) and (49) indicate that one should simply substitute the conditional mean estimate

of an unknown lagged product into this expression to form the maximum-likelihood estimate of

the covariance when only the incomplete data are known.

estimating Ep and Kp

The maximum-likelihood estimate of Ep is a limit point of the sequence defined in (46).

The terms on the right side of this equation can be evaluated as follows. Let the

conditional-mean estimate of cp in terms of the incomplete data r be defined at stage k by

E - E[ c, I r, E']. (51)

Then, (46) can be rewritten in the form

z-t,'-,EP -E[(cp_ ))(c. _ e ) ir P., P P),)
(52)

Now estimating cp from r, where from (34) and (38)
Cpr (32ES4)W p+W,(3

is a standard problem in linear estimation-theory. From Tretter [20, Ch. 14], for example, we

find that

-_ I ETE'WMS2ETS*M *W;E'W PMS + N.1!]-'r.

(54)

Furthermore, the first term on the right side in (52) is the covariance of the estimation error

when cp is estimated from r. Also from Trotter [20, Ch. 14], we have

EE(c,- PP r
N0 !] ~ W(55)

_rlkl 
- 2E, r EkW,MS[ 2E rS ° IW;E~r(kIWMS + Nol]"I S ° M*W;'1' (55

In summary, the following steps are performed to produce a sequence Ep(O), Ep(),

Ep(k) .... of estimates of Ep for which the corresponding sequence of likelihoods is

nondecreasing:
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3
I. set k - 0, select a starting estimate Ep(O);

2. calculate the estimate of cp according to (54);

1 3. calculate the error covariance according to (55);

4. update the estimate of Ep according to (52);

5. if "last iteration" then stop, else replace k by k.I and go to 2.

The starting value in step 1 can be any positive-definite, diagonal covariance-matrix of

I dimension PIxPJ. Clearly, the processing indicated in (52)-(55) is a nonlinear function of

the data.

From (40), a sequence of estimates of Kp having increasing likelihood is obtained from the

sequence of estimates of Ep according to the following formula:

K - W; w,),. (56)

estimating the scattering function

Recall that Kp is a block-diagonal matrix with the i-th diagonal block equal to the

circulant covariance matrix Kp(i) of the P-periodic reflectance process at delay m+i. The first

column of this matrix is given by Kp(i)e, where e is the P-dimensional unit vector

!IS0~ (57)

0

Denote the scattering function of the P-periodic reflectance process at delay m+i by S(i). This

5 Iis a P-dimensional vector with p-th element given from (14) by

- K,(n, 0 exp(-i

-P WK,( ). (58)
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From this expression, we see that the vector

e (59)

is a vector of I vectors of dimension P, the i-th of which is the scattering function at delay bin

m+i. Consequently from (56), a sequence of estimates of the scattering function having

increasing likelihood is obtained from the sequence of estimates of Ep according to the formula:

e

(60)

Now, the vector

appearing in (60) is an IP-dimensional vector of all ones. As a result, the quantity in (60) is a

vector whose elements are the diagonal elements of Ep(k). Thus, at iteration stage k, the

estimate of the scattering function at delay m+i is given by the P diagonal elements of the i-th

PxP diagonal block of Ep(k). We may, therefore, simply regard Ep(k) as the stage k estimate of

the scattering function. If the (p+il)-th diagonal element of Ep(k) is the placed in the (p.i)

element of a Pxl-dimensional array, as p varies from 0 to P-I and i varies from 0 to 1-1, then

the result may be displayed as the target's scattering-function image at stage k in range (i

coordinate) and cross range (p coordinate).
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estimating the reflectance process

It is interesting to note that the k-th stage conditional-mean estimate of cp, given the

measurements r and assuming that the second-order statistics of reflectance are given by the

i k-th stage estimate of the scattering function, is used to form the estimate of Ep at stage k+l

when the expectation-maximization algorithm is used. This estimate is of very much interest in

its own right because, from (38), cp(i) is the Fourier transform of the reflectance process bp(i).

Thus, if the (p+il)-th element of this estimate is placed in the (p.,i) element of a PxI

dimensional array, as p varies from 0 to P-I and i varies from 0 to 1-1, then the result may be

displayed as the target's reflectance image at stage k in range (i coordinate) and cross range (p

-oordinate).

convergence issues

3 There are some important properties of the iteration sequence (46) which are worth

mentioning. First, each step is in an improving direction. This is shown by writing (52) out as

d (k 1 +Ie,~k(k1_E~k (61)

i where

elk' - 2ErWpMSK ' (rr* - 2ErS*M' W;El'WpMS - No I)K''SM'W3 . (62)

and where

3 Ktk1 -2ES. M.W;Lr'WMS + No1 (63)

is the k-th estimate of the covariance K, of r. Next, the trace condition (30) which the

maximum-likelihood estimate must satisfy is reexamined. From the assumption of the

P-periodicity of the reflectance process and the matrix definitions given, the admissible

variations 6K must be of the form

6K- M*W 6W'M. (64)

Here, 6E is a diagonal matrix of the same dimensions as E. The trace condition (30) then

becomes

I Tr(K'(2ErS" M W;EpWpMS + N l - rr)K;'S M'W ;6E,,MS) - O. (65)
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Using the fact that Tr(AB) - Tr(BA) and evaluating this trace at the k-th iterate, we see that the

trace on the left side of (65) is equal to

(2ET)- Tr(e('*6E). (66)

According to (61), Ep(k) is changed at each stage by adding the diagonal elements of

E W e W W(67)

to Ep(k). Define

S rEtk c -, e' l r (6 8 )

as these diagonal elements. Then, evaluating the trace at this variation gives

Tr(e [k3r(k)) > 0. (69)

This shows that the variation

6r1 k(

is in an improving direction. Furthermore, we are guaranteed that the incomplete-data

loglikelihood is nondecreasing as a result of the M-step of the expectation-maximization

algorithm. At this step, the conditional expectation of the complete-data loglikelihood given the

incomplete data and the last iterate for Ep is maximized over Ep. As shown in [15] and [19],

this implies that the incomplete-data loglikelihood is nondecreasing.

In the Appendix, we show that if No > 0 and the initial guess for Ep is positive definite,

then each succeeding guess is also positive definite. This gives another interpretation of (69)

when No > 0. Since the diagonal elements of Ep(k) are positive, (69) holds with equality if and

only if the diagonal elements of e(k) are zero. It follows from this expression (69) that a second

property of the sequence (46) is that all stable points of the sequence satisfy the necessary trace

condition (30). This is easily shown by noticing that if Ep(k+l) - Ep(k), then the diagonal

elements (68) are zero. But, this implies that the diagonal elements of O(k) are zero and hence

that

Tr(e("16E) -0 (70)
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for all diagonal 6E.

computational considerations

The computations required to produce radar images with our method are specified by (52),

(54), (55), and (60) for the scattering-function image and by (52), (54), and (55) for the

reflectance image. The number of iterations of these equations that are required to produce an

3image near the convergence point is presently unknown. Our experience in using an iterative

algorithm to produce maximum-likelihood images for emission tomography suggests that 50 to

100 iterations may be necessary, but this is only a guess that will not be verified until some

experiments are completed. Some form of specialized processor to accomplish each iteration

stage efficiently will probably be needed to produce images in practically useful times. One

possible approach is the following. The matrix product

r - F2--,w ,m s

is required at each iteration stage and does not change. This PlxN-dimensional matrix can,

therefore, be computed once off line, stored, and then used as needed during on-line

computations. Then, at iteration stage k, the following on-line computations can be performed:

1. compute the NxN matrix A defined by A I+Ep(k) + N01;

2. compute the PIxN matrix B defined by B = Ep(k)r;

3. compute BA-lr and the diagonal elements of Ep(k) - BA-B+.

The computations in 3 can be accomplished in about 4N+PI-2 time steps using the systolic array

described by Comon and Robert [21] augmented, as they suggest, by one row to accomplish the

postmultiplication of BA-i by r and by IP rows to accomplish the postmultiplication by B+. The

matrix multiplications in 1 and 2 for determining A and B can also be performed rapidly on a

systolic array. More study of implementation approaches is needed, but it does not appear that

the computational complexity of our new imaging algorithm needs to be a limitation to its

practical use.

I2
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The choice of N and I is important for the computations. These parameters are selected to

achieve a desired range and cross-range resolution and are, therefore, problem dependent, but

the same considerations used with other approaches to radar imaging can be used in selecting

them. On the other hand, the choice of P is unique to our approach. As stated, we need P >

N, but no upper limit is given. In [181, it is shown that as P increases towards infinity so does

the maximum value of the incomplete-data loglikelihood function, with probability one. Thus,

P cannot be made arbitrarily large from a theoretical standpoint. Practically, it is desired to

have P as small as possible to decrease the memory requirements and the numerical operations.

The natural question, then, is what would it mean to have P equal to its smallest allowed value

N? For this choice, W is an NxN matrix and the matrices K(i) are Hermitian symmetric,

circulant covariance matrices. Clearly, for a process which is not circulant, this produces an

undesirable estimate for K. As P increases, the block diagonal matrices in KN look less like

circulant matrices. Hence, there is a tradeoff involved in the choice of P between the practical

constraints of storage and computations and desirable estimates for K. So far as we have been

able to determine, there is no theoretical basis for selecting P.
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5. Conclusions

The expressions we have obtained for forming images of diffuse, fluctuating radar targets

are based on the model stated in Section 2. The target reflectance is assumed to introduce

wide-sense-stationary uncorrelated-scattering (WSSUS) of the transmitted signal with no glint or

specular components being present. The reflectance process is assumed to be a WSSUS Gaussian

process with unknown second-order statistics given by a delay-dependent covariance or

scattering function. Echos of the transmitted signal are received from all the reflecting patches

that make up the target. Each patch introduces some propagation delay, doppler shift, and
random amplitude-scaling into the signal it reflects. The superposition of the echos from all the

patches is received in additive noise. Thus, the reflectance process is only observed indirectly

following a linear superposition and in additive noise, so neither the reflectance process nor its

second-order statistics are known. Target images are made by displaying estimates of either the

reflectance process or its second-order stp+istics (scattering function) based on processing the

received signal. In Section 3, we derived the trace condition which the maximum-likelihood

estimate of the covariance of the reflectance must satisfy, and we concluded that this condition

is too complicated to solve explicitly for the estimate. This motivated the introduction in

Section 4 of the incomplete-complete data model and the use of the expectation-maximization

algorithm, which results in a sequence of estimates of the scattering function having increasing

likelihood. A corresponding sequence of estimates of the reflectance process is also obtained.

There are a number of issues yet to be resolved for the approach we have presented, and

we are addressing these. Glint and specular components in the return echos need to be

accommodated. The selection of transmitted signals to produce good images is an important

subject about which little study has been made. The quality of target images obtained with our

new approach is not known at present; to study this issue, we are presently implementing a

computer simulation so that comparisons to alternative processing strategies can be made. The

equations we have developed are computationally demanding, so special processing architectures

will be important to make their use practical.

i
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7. Appendix

derivation of the trace condition (30)

From the definition of the loglikelihood function in (28), we have

.(L)(K + a6K) - L, (K))
a (Al)

-- r((K, + a 2 E,3 -6 K) -'- r n (det(K, aT2 E S *6 KS) dt (a 2ar

where Kr is the covariance of the incomplete data r as given in (26). Examining the first term

on the right, we have that. it equals

2 -r K-'(( I+a2ErS-6KSK,'-I)r
2a r r r(A2)

I* K-'(a2ErS'6KSK;')(I +a2ErS*6KSK')-'r

1-r"K' 2ErS8KsK'r r O(a).
2

Examining the second term on the right in (AI), we have

I )- - -In(l +aB . d-- n(det(I +a2,ETS*6KSK2) -nde( a)2a 2a

1
2a

(A3)

where B is defined in the first equality. Equations (A2) and (A3) imply that

rK-'2ErS 6KSK-'r- Tr(2ErS*6KSK-) - O,

(A4)

which is the trace condition (30).

derivation of the sign-definiteness condition

To check the sign-definiteness of the second derivative of the loglikelihood Lid(K), we

form the limit
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x(2ErS*KS + a2ErS*6KS + No i)"'S6KS

-K-1(rr*-N-2ESKS)K''S'6KS)

"Tr(K-'2ErS'6KSK' '(2ErSKS+N0 J-2rr)K-'2ES*6KS). (AS)

A necessary condition for K to be a relative maximum is that this last expression evaluated at K

be equal to or less than zero for all admissible variations 6K. Under the assumptions in Section

4, admissible variations are given by (64). Substituting (64) into (A5) and evaluating for all-

diagonal matrices 6E gives the second-order necessary condition. A sufficient condition for K

to be a strict local maximum is that the trace condition (30) is satisfied and that (A5) is strictly

negative for all admissible variations.

estimating a general Toeplitz matrix

In Section 4, we derived a sequence of estimates for a covariance matrix subject to the

constraint that the estimates must be circulant Toeplitz matrices. For completeness, we develop

and discuss in this section the equations for estimating a covariance matrix subject to the

weaker constraint that the estimates be general Toeplitz matrices. Similar equations for other
constraints on the Toeplitz matrices are easily obtained by mimicking the steps in the main body

of this paper.

Let the complete data be (b,w), and let b be normally distributed with zero mean and

U covariance K, as given in (27). The complete-data loglikelihood is given in (35). Maximizing

this function gives the trace condition

Tr (K'(bb K) K' 6 K) - 0 (A6)

which the maximum-likelihood estimate K must satisfy. Performing the E and M steps of the

expectation-maximization algorithm yields the following iteration sequence for the elements

K(n,i), n 0 0, 1 .... N-), of the covariance matrix K(i) defined in (25):

K" "-(n, i). Nflb(J )b( J rK I (A7)Kl )(ni)"N- n E  Y]"
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In matrix form,

Kik" - KlkI + 2ETK(k) SK I(rr* - 2ETSK S_ Nol)K.k-t SKlhI, (A8)

where

K ( 2ETS"K W S + N. (A9)

If this iteration converges to a stable point, then the trace condition is satisfied at that point, as

may be shown by using the same arguments as in Section 4. It is worth restating that the reason

this iteration is not recommended here is that the probability that the iteration sequence

generates a singular estimate for K approaches one as N gets large. By restricting consideration

to Toeplitz matrices with circulant extensions, the loglikelihood function is bounded with

probability one for finite extensions and a positive definite K is generated with probability one,

as proven by Fuhrmann and Miller [18].

proof that Ep(k) is positive definite for every k

Assume that the initial guess .p(O) for Ep is positive definite and that No > 0. We will now

show that if Ep(k) is positive definite, then so is Ep(k+1), and thus, by induction, Ep(k) is

positive definite for all k. One key to following this derivation is the matrix identity

B(I + AB)-' - (I + BA)-' B. (A10)

This identity is used to rewrite (62) as

EP H (No2E E 1WPMSS1 M WI 'k' * N+

,2ETZ" P  M0rr Pj)

-N 0 2Er(HE W"WMS)(S*MW;E) 'H )  (Al 1)

+2 ET ( HE k W pM Sr )*( S M" W; ' ')
+N2HEk'H ,

where we have defined H according to

H-(2ErE )WMSS.M W.V;+ N 0 )-'. (A12)
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Clearly, all the diagonal elements of (Al l) are greater than or equal to zero. To show that they

are strictly positive, we look at the last term and get that the i-th diagonal element is

rI  Ir- I
(N HEI"IH'),, -NO (

I-a

9 IP- I (A13)-NO T_ I(H (,,I'( ),,,(A3
1o0

3 which is clearly positive when No > 0 since H is invertible and all diagonal elements of Ep(k)

are positive.
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